Adoption Gaps and Implications for Scaling Climate-Resilient and Biofortified Rice: Panel Evidence from Climate-Prone Areas of Bangladesh

Taznoore Samina Khanam

Research Fellow

Bangladesh Institute of Development Studies (BIDS)

> Why Rice

- 58% of daily caloric intake
- 36% of protein intake per capita
- 92% of farming households cultivate rice

Why Biofortified Zinc rice

- 55% of the population are zinc deficient
- Stunted Children: 24%
- Wasted Children: 11%
- Underweight Children: 22%

BRRI and BINA have developed climate-stress-tolerant Rice Varieties (STRVs) and Biofortified rice

Submergence TRV:

 Level of Submergence tolerance 10-25 days

Salinity TRV:

• Level of salt tolerance 8-14 ds/m Drought-tolerant/ escaping Rice

Varieties:

- Short-duration Varieties or earlymaturing varieties
- Zinc rice contains
- Zinc level 19-27.6 mg/kg
- Iron level 10.1 mg/kg
- Normal rice contains
- Zinc level 10.9 mg/kg
- Iron level 8 mg/kg

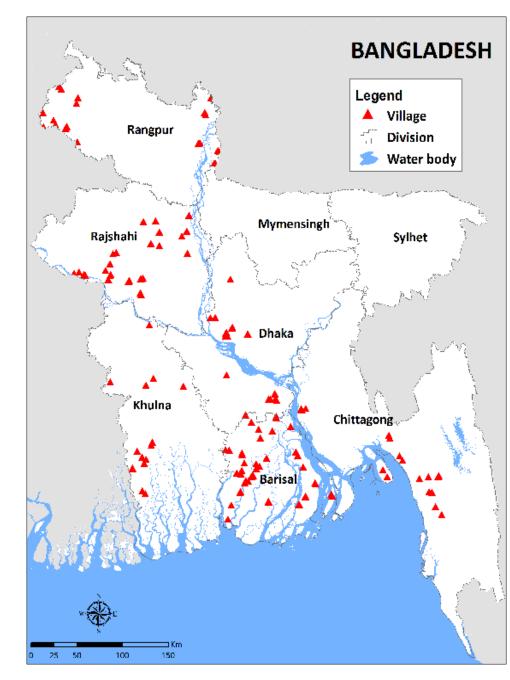
Why Climate Stress Tolerant Rice Varieties (STRVs)

- Highly climate-vulnerable (World Bank, 2018)
- Farmers lose ~9% of rice harvest
- 41% of agricultural land is moderately to highly floodaffected
- Coastal salinity increased by 26-33% over last 35 years

Climate vulnerability and nutritional deficiencies in Bangladesh: Need a pathway toward resilient rice systems and food security

Contexts

- ➤ Rice diversity in Bangladesh
- >1,000 traditional rice varieties (TVs)
- >130 modern varieties (MVs).
- Climate-resilient & biofortified varieties
- Mostly concentrated in two seasons: Aman (Rainfed) and Boro (Irrigated)
- 23 STRVs stress-tolerant rice varieties
- 6 Zinc rice varieties biofortified for nutrition
- > STRV releases:
- Before 2010: 8 varieties
- 2011–2017: 11
- First zinc rice (BRRI dhan62) released in 2013
- Despite a decade of development, farmer-level adoption evidence is limited


Objectives of the Study

Assess patterns and determinants of STRVs and biofortified rice adoption to identify key barriers, and opportunities, and policy actions to support sustainable scaling within Bangladesh's food system.

Data

- The study uses three rounds of panel data from the Rice Monitoring Survey, conducted by the International Rice Research Institute (IRRI).
- The survey employed a multi-stage sampling method to select the divisions, districts, and villages.
- The total number of households surveyed was 1,485, with areas covering 150 villages, 75 thanas, and 16 districts of six divisions.
- Panel data:
- First-round survey: 2014
- Second-round survey: 2017
- Third-round survey: 2022
- Low attrition rates of 0.93% in 2017 and 1.07% in 2022
- Detailed information on plot-level rice varieties and production, household and plot characteristics, and experiences with submergence, salinity, and drought, among other factors.

Location of Sample Villages

Methods

- A pooled multinomial logit (MNL) model was estimated to examine how household decision-making types influence the probability of adopting, or stress-tolerant rice varieties, biofortified rice, modern varieties (HYV+HYV) and traditional varieties.
- To address unobserved household heterogeneity that may correlate with observed covariates, we adopt a Mundlak approach, including household means of time-varying explanatory variables as additional regressors (Mundlak, 1978).
- The latent utility that household i plot p and time t derives from choosing variety $j \in \{S, Z, M, T\}$ as:

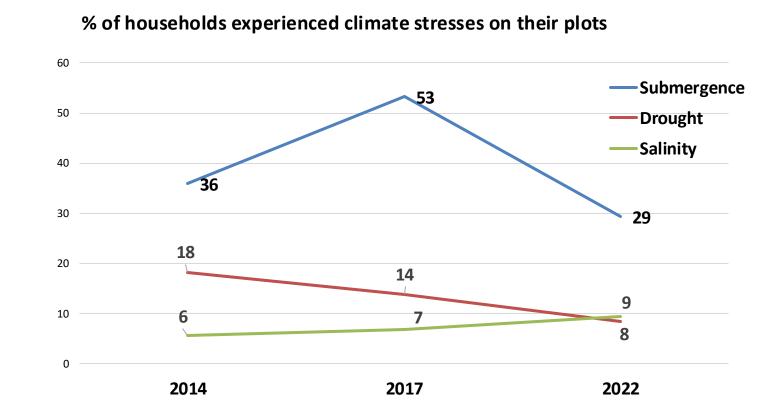
$$U_{ijpt} = \alpha_j + \beta_j D_{ipt} + \delta_j C_{i,t-1} + X'_{ipt} \gamma_j + \bar{X}'_i \theta_j + \varepsilon_{ijpt}$$

• Where, U_{iipt} is the latent utility in the household i plot p and time t.

 $C_{i,t-1}$ is prior-period experience of climate stress (submergence, drought, salinity) by the household's plot.

 X_{ipt} is vector of plot and household-level characteristics,

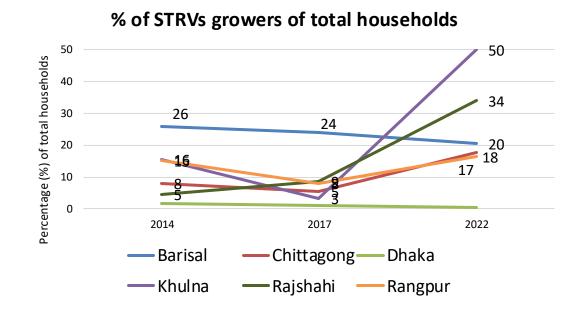
 \bar{X}_i is Mundlak terms which is household level means of time-varying covariates, and


 ε_{ijpt} is an idiosyncratic error term.

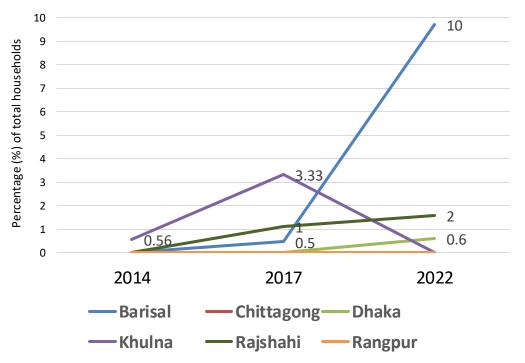
- Year fixed effects capture time-specific shocks common to all households and cluster-robust standard errors at the household level correct for intra-household correlation of errors across plots and varieties.
- MNL models were estimated separately for these two seasons (Rainfed and Irrigated) to capture potential differences in adoption behavior across growing periods.

Results

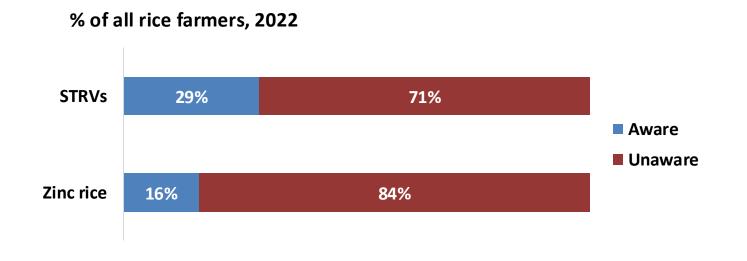
Climate Stress (Submergence, Drought, Salinity) patterns: Flood Dominance and Rising Salinity

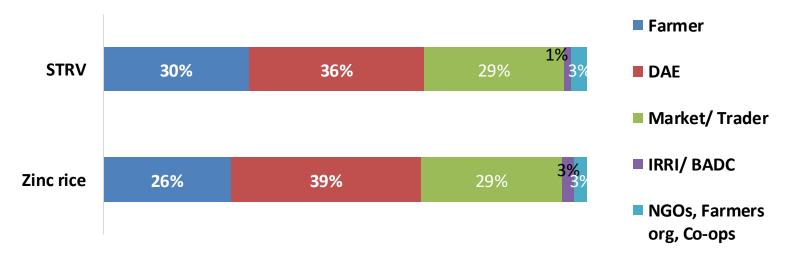


- Climate stress remains high and volatile across Bangladesh
- Climate stress is persistent and recurrent
- Regional fluctuations, significant upward trends in Barisal and Dhaka
- Flooding drives most climate stress, while salinity risk is creeping upward despite declining drought.

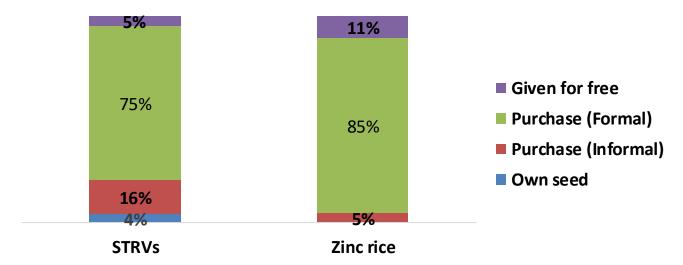

Farmers adoption | Emerging but uneven uptake of climate-resilient and biofortified zinc rice across regions

Rice Varieties	% of households adopted STRVs rice			
	2014	2017	2022	
Submergence TRV	6.6	7.3	13.8	
Drought TRV	1.4	0.6	7.9	
Salinity TRV	5.3	4.0	3.4	
STRVs	13.8	11.4	<mark>23.7</mark>	
Zinc Rice	0	1.0	<mark>3.3</mark>	


- Submergence-tolerant varieties show the strongest growth
- Adoption of Climate-Resilient Rice Rises—Submergence and Drought Traits Lead, Salinity Lags
- STRV adoption increased substantially, especially in Khulna and Rajshahi
- Zinc rice uptake by farmers is low but accelerating, most notably Barisal
- Barisal shows varietal switching→ STRVs use declines while Zinc rice adoption rises.
- Dhaka remains consistently low, although more exposed to climate stresses



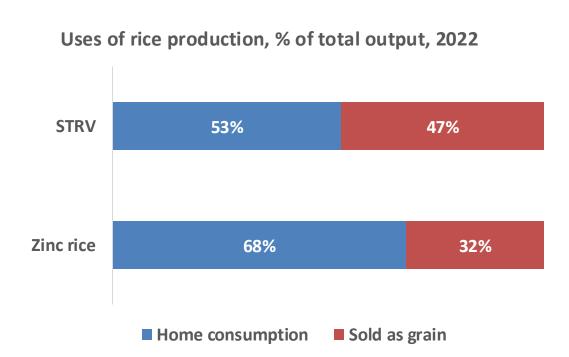
Farmers Awareness | Farmers have low awareness about the availability and value proposition



- Most farmers are unaware of the Zinc rice varieties, and in case of STRVs, awareness is also very low
- Farmers hear about STRVs and Zinc rice through extension (DAE)

Seed Access Challenges | Formal sources dominate, but barriers limit adoption

% of sources of seeds for STRVs and Zinc rice growers, 2022



% of STRVs and Zinc growers face access and market barriers, 2022

- Seed access and adoption barriers are misaligned
- Farmers buy seeds mainly from formal markets, and face poor marketability, affordability, and availability of STRV/Zinc seeds.

Farmers Preferences for Rice Seeds | Farmers adopt variety that perform economically and are market-acceptable

▶ Primary traits looked for in rice seed

- ➤ Rice production for own consumption
- Consumption traits (grain size, shape, taste)
- High yield
- ➤ Rice production for sale in market
- High yield
- High market price
- Zinc rice is grown for farmers own consumption

> STRVs

- BRRI 51 & BRRI 52 lead among STRVs, favored for high yields and reliable submergence tolerance in rainfed season.
- BRRI 75 and BINA17 most popular drought escaping varieties. offer good yield and market price in rainfed season.

> Zinc rice

- BRRI 74 dominates Zinc rice adoption: BRRI 74 and BRRI 84 offer competitive yields but farmers may view consumption traits less favorably.
- BRRI 74 coarse grain limits market expansion in regions preferring fine/slender rice in Boro season.

Regional preferences

• BRRI 74 (Zinc rice), and BRRI 52 (STRVs) uptake is concentrated in Barisal, a division that prefers coarse rice.

Rice Varieties	2014	2022	Expected Yield (ton/hectare)	Characteristi cs of Grain	Adoption level (2014 to 2022)
	<mark>% Uptake</mark>	e among of			·
	STRVs growers				
		Submer	gence tolerant rice	e varieties	
BRRI dhan 51	9.5	29.1	4.5	m.Slender	\uparrow
BRRI dhan 52	32.8	24.7	5.5	m.Bold	\uparrow
	Drought tolerant rice varieties				
BRRI dhan 56	6.6	0	4-4.5	Bold	\downarrow
BRRI dhan 57	2.1	0.6	4.0	Slender	\downarrow
BRRI dhan 75	0	18.8	5.5	m.Slender	\uparrow
BINA dhan 17	0	12.8	7.0	Slender	\uparrow
	Salinity tolerant rice varieties				
BRRI dhan 41	9.5	1.6	4.5	Long Bold	\downarrow
BRRI dhan 47	18.3	3.4	6.1	m.Bold	\downarrow
BRRI dhan 67	0	3.4	6.0	m.Slender	\uparrow
BINA dhan 8	12.9	0	5-7.5	Bold	\downarrow
	<mark>% Uptake</mark>	e among of			
	Zinc Rice growers				
BRRI 62	0	4.65	4.5	Slender	\uparrow
BRRI 84	0	11.63	6.5	m.Slender	↑
BRRI 74	0	83.72	7.1	Bold	\uparrow

Climate shocks and extension services drive STRVs adoption, while gender shape Zinc rice uptake in Rainfed/ Aman season

· Marginal Effects of Determinants of STRV Adoption (Pooled Multinomial Logistic with Mundlak approach) for Aman

	Stress Tolerant Rice Varieties (STRVs)	Zinc Rice	Modern Varieties (MVs)	Traditional Varieties (TVs)
	1	2	3	4
Lagged Climate Stress	<mark>0.074***</mark>	0.001	-0.072***	-0.003
experience (Yes=1)	(0.021)	(0.001)	(0.022)	(0.015)
Meet extension officer (Yes=1)	<mark>0.041**</mark>	0.0001	0.014	-0.054***
	(0.021)	(0.002)	(0.025)	(0.019)
Female-headed household	-0.025	-0.024***	0.024	0.025
	(0.044)	(0.008)	(0.050)	(0.038)
Joint significance of mean of time varying covariates $\chi^2(30)$ Prob> $\chi^2(30)$	211.77 0.0000			
Number of Observations	8683			
Pseudo R-squared	0.146			
Year fixed effects	Yes			
Control variables	Yes			

Notes: Robust standard errors clustered at the household level are in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01. Mundlak means of time-varying covariates included

Control variables: Log of total Owned land (ha), Age of the hh head, Education of of hh head, Number of rice plot, tenure status, Access to irrigation. Land elevation, Household size.

- The experience of climate stress in the previous year significantly increases the likelihood of STRV adoption.
- Extension significantly increases adoption of STRVs in aman season.
- Extension no effect on Zinc Rice, which contributes to lower adoption in Aman.
- Gendered adoption reflects risk preferences: males adopt Zinc Rice under uncertainty (Aman).

Climate shocks and gender shape Zinc Rice uptake in Boro/ Irrigated, while STRVs are less responsive to these factors

· Marginal Effects of Determinants of STRV Adoption (Pooled Multinomial Logistic with Mundlak approach) for Boro

	Stress Tolerant Rice Varieties (STRVs)	Zinc Rice	Modern Varieties (MVs)	Traditional Varieties (TVs)
	1	2	3	4
Lagged Climate Stress	0.001	<mark>-0.075**</mark>	0.082**	-0.008
experience (Yes=1)	(0.014)	(0.032)	(0.038)	(0.026)
Meet extension officer (Yes=1)	0.008	-0.016	0.049*	-0.042*
	(0.016)	(0.011)	(0.029)	(0.024)
Female-headed household	0.018	<mark>0.023*</mark>	-0.008	-0.033
	(0.013)	(0.012)	(0.050)	(0.047)
Joint significance of mean of	120.03			
time varying covariates $\chi^2(30)$	0.0000			
Prob> $\chi^2(30)$				
Number of Observations	5638			
Pseudo R-squared	0.199			
Year fixed effects	Yes			
Control variables	Yes			

Notes: Robust standard errors clustered at the household level are in parentheses. *p < 0.10, **p < 0.05, ***p < 0.01. Mundlak means of time-varying covariates included

Control variables: Log of total Owned land (ha), Age of the hh head, Education of of hh head, Number of rice plot, tenure status, Access to irrigation. Land elevation, Household size.

- Farmers do not respond to climate stress on Boro STRVs.
- The experience of climate stress in the previous year significantly decreases the likelihood of Zinc Rice adoption.
- Extension has little or no effect on STRVs, which contributes to lower adoption in Boro.
- Female-headed households are more likely to adopt zinc rice, while extension is not currently effective.
- Strong MV incumbent varieties (e.g. DRRI 28, BRRI 29) dominate Boro cultivation. Farmers are reluctant to switch from these high-yield, market-trusted varieties, which reduces the adoption space for new STRVs and Zinc rice.

Policy Recommendations

Climate-Resilient STRVs

- Promote submergence/drought-tolerant varieties in high-risk regions (Barisal, Dhaka, Khulna, Rajshahi).
- Promote STRVs as high-yielding varieties that perform well under normal conditions and remain resilient under climate stress.
- Intensify extension & awareness → link stress-tolerant traits with yield and climate resilience.
- Strengthen seed systems → formal and communitybased seed supply, ensure availability and affordability.
- Market incentives → encourage farmers to maintain adoption through risk-reducing tools (crop insurance, subsidies).

Biofortified Zinc Rice

- Increase awareness & nutrition messaging → highlight dietary benefits.
- Intensify extension & awareness
- Improve agronomic competitiveness → yield, grain type, and local preferences.
- Strengthen seed systems → formal and communitybased seed supply, ensure availability and affordability
- Develop supply chains → differentiated channels for millers and aggregators; prevent mixing with other rice.
- Targeted incentives & programs → subsidies, social protection programs, demand-generation partnerships.
- Promote value-added products → branded or packaged zinc rice for market uptake.

Policy Recommendations

- Adoption patterns differ by season, variety, gender, and climate stress exposure. Scaling STRV and Zinc rice requires aligning seed access, information delivery, and market incentives—not just releasing new varieties.
- Policy interventions should be season-specific and gender-targeted, prioritizing STRVs in climate-stress prone areas and promoting Zinc rice via female-focused extension.