

DELIVERING FOR NUTRITION IN SOUTH ASIA CONNECTING THE DOTS ACROSS SYSTEMS

December 3, 2024 • Colombo, Sri Lanka

# Learning Lab 1a: Establishing nutrition surveillance system and analyzing longitudinal data

Centre for Non-Communicable Diseases and Nutrition (CNCDN) BRAC James P Grant School of Public Health (BRAC JPGSPH) BRAC University, Dhaka, Bangladesh

**Facilitators:** Md. Mokbul Hossain<sup>1</sup>, Fahmida Akter<sup>1</sup>, Mahbub Latif<sup>1,2</sup>, Ali Ahsan<sup>1</sup>, Malay Kanti Mridha<sup>1</sup>

<sup>1</sup>CNCDN, BRAC JPGSPH, BRAC University; <sup>2</sup>Institute of Statistical Research and Training, Dhaka University



DELIVERING FOR NUTRITION IN SOUTH ASIA CONNECTING THE DOTS ACROSS SYSTEMS

## Preamble



#### **Facilitators**

Md. Mokbul Hossain, Senior Analyst (Statistics) Fahmida Akter, Assistant Scientist Ali Ahsan, Deputy Research coordinator Mahbub Latif, Scientist and Professor\* Malay Kanti Mridha, Professor and Director

All the facilitators are from the Center for Non-communicable and Nutrition BRAC James P Grant School of Public Health BRAC University

\*Also affiliated with Dhaka University



#### **Session outline**

- Importance of longitudinal data
- Introduction to the nationwide nutrition surveillance system in Bangladesh
- Longitudinal data analysis: a practical example



## Learning objectives

1. Gain skills on how to establish a nutrition surveillance system

2. Get an orientation on analysis and interpretation of longitudinal nutrition data



DELIVERING FOR NUTRITION IN SOUTH ASIA CONNECTING THE DOTS ACROSS SYSTEMS

# Why do we need longitudinal studies in nutrition?

## Why do we need longitudinal study in nutrition? (1)

- 1. Distinguishes between 'within-person' and 'between-person' change
- 2. Can predict within-person changes so that interventions can be targeted effectively
- 3. Can investigate the intergenerational cycle of malnutrition
- 4. Track changes in nutrition indicators over time
- 5. Better suited to examine how multiple factors (e.g., behavioral, environmental, socio-demographic factors) influence nutrition outcomes
- 6. Can capture fluctuations in nutritional indicators based on seasonality and cyclical trends
- 7. Can identify causal relationships with malnutrition and other health outcomes

#### Why do we need longitudinal study in nutrition? (2)

8. Can evaluate the outcomes and impact of nutrition-specific and nutritionsensitive interventions (e.g., school meal program, nutrient supplementation)

9. Better suited to improve understanding on how early life exposures to malnutrition influence the long-term health and nutrition outcomes

10. Facilitates risk and protective factors identification

11. Improves statistical power because repeated measures of the same individuals reduce variability and improve the precision of estimates.

12. Reduces bias (e.g., recall bias)

13. Supports design of programs and development of policy

## **Some famous longitudinal studies**

- 1. The Framingham Heart Study (1948, USA, n=5209)
- 2. The Whitehall Studies (1967, UK, n=10,308)
- 3. The Millennium Cohort Study (2000, UK, n=18,818)
- 4. The Malmo Diet and Cancer Study (1991, Sweden, n=28,449)
- 5. The Pelotas Birth Cohort Studies (1982, Brazil, n=4,275)
- 6. The Tohoku Medical Megabank Project (2011, Japan, n=150,000)
- 7. The European Prospective Investigation into Cancer and Nutrition (1992, Europe, n=519,978)
- 8. The PURE Study (Prospective Urban Rural Epidemiology) (2003, 25 countries, n=424,921)
- The Growing Up in Singapore Towards Healthy Outcomes (GUSTO) Study (2009, Singapore, n=1,247)



DELIVERING FOR NUTRITION IN SOUTH ASIA CONNECTING THE DOTS ACROSS SYSTEMS

## **Bangladesh Food Security and Nutrition Surveillance**



- First nutrition survey after independence at 1975-76 and second was in 1981-82
- IPHN conducted Food Security and Nutrition Surveillance (FSNS) from 1990 to 2007
- BRAC JPGSPH, HKI, and BBS conducted FSNS from 2008 to 2013
- The government of Bangladesh, development partners, and other stakeholders provided funding to continue the FSNS in 2015 and 2018
- The World Bank supported FSNS in 2023

## Background



- Bangladesh is passing through an epidemiological and demographic transition
- Data are scarce about the nutritional status of men, adolescent boys, older adults

## Rationale

- Planning and implementation of nutrition programs following life-cycle approach need better data for each life stage
- Tracking of progress in necessary to understand the success and failures nutrition-sensitive and nutrition-specific programs
- Local level planning and implementation of programs are needed to improve nutrition



#### **Institutional partners**



National Nutrition Services, Institute of Public Health Nutrition, Directorate General of Health Services



James P Grant School of Public Health, BRAC University



**Bangladesh Bureau of Statistics** 



#### **Objectives**

- To assess household socio-economic status, food security and water, sanitation and hygiene status in rural, non-slum urban, and slum households of Bangladesh
- To assess dietary diversity, feeding practices and nutritional status of the underfive children and 6-9 years old children
- To assess dietary diversity, the burden of non-communicable diseases related risk factors and nutritional status of the adolescent boys and girls
- To explore dietary diversity, the burden of non-communicable diseases related risk factors, nutritional status of adult women and men
- To assess dietary diversity, the burden of non-communicable diseases and related risk factors, nutritional status, and quality of life of older adults



## **Design and Study Sites**

| Design: Longitudina, two waves so far: 2018-2019, 2023 |                   |              |              |  |  |
|--------------------------------------------------------|-------------------|--------------|--------------|--|--|
| SI#                                                    | Rural             | Urban        | Slum         |  |  |
| 1                                                      | Division: 08      | Division: 08 | Division: 08 |  |  |
| 2                                                      | District: 16      | District: 08 | District: 10 |  |  |
| 3                                                      | Upazila: 16       |              |              |  |  |
| 4                                                      | Union: 32         | Ward: 09     |              |  |  |
| 5                                                      | Village/Mouza: 64 | Mahalla: 16  | Slum: 10     |  |  |

CONNECTING THE DOTS ACROSS SYSTEMS

DQ

#### **Study Sites Map**





## Sample Size

Outcome indicators ranges from 4% to 98%Minimum required sample:

 $n = DEF X \{z_{\alpha/2}^2(p)(1-p)\}/d^2$ 

> DEF = the design effect

> p = apriori proportion of the relevant indicator

 $> z_{\alpha/2} =$  Standard normal quantile

> d = allowable margin of error

**\***α = 0.05

**☆**d = 0.05 for >10%; d/2 for 10% or less

◆DE = 1.61 considering ICC = 0.01

620 persons in each population group in each division, 3720 total for each of the 6 groups in each division

Another 3720 from 10 slums [Total sample 33,480]



## **Study population**

#### **Inclusion Criteria**

- Living in the household for at least 3 months
- Sharing meal from the same cooking pot
- ✤ Age: 0-5, 6-9, 10-19, 20-59, 60+
- Not more than 1 in each population group in one household

#### **Exclusion Criteria**

Unable to give consent (e.g., major psychiatric illness)

#### Methods: Sampling Rural areas: Five stage cluster sampling design



#### Final rural sample was 11,790 households with 21,104 participants

#### Methods: Sampling Non-slum urban: Three stage cluster sampling design

2 wards were selected from each of the divisional headquarters (Large city Stage corporations) Two segments/clusters from each of the Wards Stage 2 For each age group, eighty (80) households with at least one member of that age group were randomly selected to interview 62 individuals in each Stage age group from each cluster 3

Final non-slum urban sample was 3,368 households with 5,256 participants



#### Methods: Sampling Slums: Three stage cluster sampling design



Final slum sample was 2,165 households with 3,645 enrolled participants

#### **Study Tools**

**D**4N 20 24

| Respondents               | Interviews                                                                                                                                                                                    | Measurement                                         |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Household head            | Socio-economic status, remittance, food security, cooking oil, iodized salt, and water sanitation and hygiene practices                                                                       |                                                     |
| <5 children               | Age, sex, infant and young child feeding, dietary diversity, morbidity, nutrition status                                                                                                      | Weight, height/length, MUAC                         |
| 6-9 years old<br>children | Age, sex, dietary diversity, morbidity, nutrition status                                                                                                                                      | Weight, height                                      |
| Adolescent boys           | Age, dietary diversity, behavioral risk factors of non-communicable diseases, mental health (depression)                                                                                      | Weight, height                                      |
| Adolescent girls          | Age, dietary diversity, reproductive history, menstrual hygiene, marital status, behavioral risk factors of non-communicable diseases, mental health (depression)                             | Weight, height                                      |
| 20-59 years old men       | Age, dietary diversity, behavioral risk factors of non-communicable diseases, self reported chronic disease                                                                                   | Weight, height, Waist circumference, % body fat, BP |
| 20-59 years old<br>women  | Age, dietary diversity, reproductive history,<br>menstruation/menopause/menstrual hygiene, behavioral risk factors of non-<br>communicable diseases, self reported chronic disease, pregnancy | Weight, height, Waist circumference, % body fat, BP |
| 60 years and above        | Age, dietary diversity, behavioral risk factors of non-communicable diseases, self reported chronic disease, nutritional status, quality of life (EQ-5D-5L), mental health (depression)       | Weight, height, Waist circumference, % body fat, BP |



#### **Measurement devices**

| SL# | Anthropometry/BP                                                                                       | Device                    |
|-----|--------------------------------------------------------------------------------------------------------|---------------------------|
| 1   | Weight [1-5 years, 6-9 years, adolescent boys, girls, 20-<br>59 years old women and men, older adults] | TANITA<br>UM-070          |
| 2   | Weight (<1 years)                                                                                      | EB-522                    |
| 3   | Height/Recumbent length                                                                                | Locally made height board |
| 4   | MUAC                                                                                                   | ShorrTape                 |
| 5   | Waist circumference (Adult and elderly)                                                                | Local measuring tape      |
| 6   | BP for adult and elderly male & female                                                                 | Omron (HEM 7120)          |

## Distribution of listed household members by population group and place of residence (2018-2019)

DAN 20 24

|                        | Population summary |                |                |               |  |  |
|------------------------|--------------------|----------------|----------------|---------------|--|--|
| Variables              | Rural              | non-slum Urban | Slum           | Total/Overall |  |  |
| Households             | 16,403 (64.7%)     | 5,726 (22.6%)  | 3,242 (12.8%)  | 25,371        |  |  |
| Total Population       | 70,762 (71.3%)     | 23,207 (23.4%) | 13,691 (13.8%) | 99,209        |  |  |
| 0-5 years old children | 6,891 (67.0%)      | 1,931 (18.8%)  | 1,460 (14.2%)  | 10,282        |  |  |
| 6-9 years old children | 6,426 (67.5%)      | 1,798 (18.9%)  | 1,296 (13.6%)  | 9,520         |  |  |
| Adolescent girls       | 6,736 (64.0%)      | 2,318 (22.0%)  | 1,475 (14.0%)  | 10,529        |  |  |
| Adolescent boys        | 6,654 (65.2%)      | 2,164 (21.2%)  | 1,393 (13.6%)  | 10,211        |  |  |
| 20-59 years old women  | 12,692 (63.4%)     | 4,683 (23.3%)  | 2,638 (13.2%)  | 20,013        |  |  |
| 20-59 years old men    | 17,717 (61.8%)     | 7,388 (25.8%)  | 3,546 (12.4%)  | 28,651        |  |  |
| Older adults           | 7,341 (75.0%)      | 1,527 (15.6%)  | 914 (9.3%)     | 9,782         |  |  |



## Distribution of enrolled respondents by age groups and place of residence (2018-2019)

DAN 20 24

| Variables              | Population summary |               |               |               |  |  |
|------------------------|--------------------|---------------|---------------|---------------|--|--|
|                        | Rural              | Urban         | Slum          | Total/Overall |  |  |
| Households             | 11,790 (68.1%)     | 3,368 (19.4%) | 2,165 (12.5%) | 17,323        |  |  |
| Sentinel sites         | 57                 | 15            | 10            | 82            |  |  |
| Study population       | 21,104 (70.3%)     | 5,256 (17.5%) | 3,645 (12.1%) | 30,005        |  |  |
| 0-5 years old children | 3,525 (70.0%)      | 887 (17.6%)   | 621 (12.3%)   | 5,033         |  |  |
| Adolescent girls       | 3,490 (69.7%)      | 898 (17.9%)   | 622 (12.4%)   | 5,010         |  |  |
| Adolescent boys        | 3,499 (69.9%)      | 889 (17.8%)   | 616 (12.3%)   | 5,004         |  |  |
| 20-59 years old women  | 3,565 (69.7%)      | 921 (18.0%)   | 626 (12.2%)   | 5,112         |  |  |
| 20-59 years old men    | 3,504 (70.8%)      | 840 (17.0%)   | 607 (12.3%)   | 4,951         |  |  |
| Older adults           | 3,521 (71.9%)      | 821 (16.8%)   | 553 (11.3%)   | 4,895         |  |  |



DELIVERING FOR NUTRITION IN SOUTH ASIA CONNECTING THE DOTS ACROSS SYSTEMS

## Longitudinal data analysis: a practical example



#### Contents

- Introduction to longitudinal data
- Regression models for longitudinal data
  - Linear mixed effects and marginal models
- Analysis of nutrition surveillance data
  - Descriptive statistics and regression models
- Summary



## Longitudinal study...1

- In a longitudinal study, individuals are measured repeatedly over time, whereas in cross-sectional studies, a single outcome is measured from each individual
- Longitudinal study requires special statistical techniques because observations from one individual are assumed to be correlated and from different individuals are assumed to be independent



## Longitudinal study...2

- In longitudinal study, within-individual change in response can be captured in addition to between-individual change
- The main objective of a longitudinal study is to examine how these within-individual changes are associated with selected covariates

#### Longitudinal study...3

- Regression model for analysing independent responses, e.g., linear regression model, logistic regression model, proportional hazards model, can be extended for analysing longitudinal data
- There are two main approaches to analysing longitudinal data
  - Conditional model, e.g., linear and generalized linear mixed effects models, frailty models, etc.
  - Marginal model, e.g., generalized estimating equations (gee) method, which is an extension of generalized linear model (glm)



## Linear mixed effects (LME) model...1

- LME model accommodates between-individual variability as well as within individual variability over time
- The fixed effect estimates obtained from an LME model for repeated continuous outcome measures describe the population average effects that can be obtained by marginal models
- LME can be used to explore subject-specific prediction and to adjust for possible confounders
- Model assumptions can be examined using residual analysis

#### Linear mixed effects model...2

★ Y<sub>i</sub> = (y<sub>i1</sub>, ..., y<sub>id</sub>)' → response vector corresponding to *ith* individual (i = 1, ..., n)

• Linear mixed effects model for the response vector  $\mathbf{Y}_i$ 

 $\mathbf{Y}_i = X_i \boldsymbol{\beta} + Z_i \boldsymbol{b}_i + \boldsymbol{\epsilon}_i$ 

- $X_i$  is the covariate matrix and  $\beta$  is the corresponding vector of fixed effects
- $Z_i$  is the covariate matrix and  $b_i$  is the corresponding vector of random effects, and  $\epsilon_i$  is the vector of random errors



#### Linear mixed effects model...3

Assumptions regarding random effects and error terms

$$\boldsymbol{b}_i \sim N_d(\boldsymbol{0}, G)$$
 and  $\boldsymbol{\epsilon}_i \sim N_n(\boldsymbol{0}, \Sigma)$ 

- Independence assumption
  - Responses within a cluster are marginally correlated, but they are independent conditional on the random effects
- Marginal and conditional mean

$$E(\mathbf{Y}_i) = \mathbf{X}_i \mathbf{\beta}$$
 and  $E(\mathbf{Y}_i | \mathbf{b}_i) = \mathbf{X}_i \mathbf{\beta} + \mathbf{b}_i$ 



#### Marginal models...1

In marginal models, also known as population-averaged models, the mean function is defined for the response at each occasion as a function of covariates

$$E(Y_{ij} | X_{ij}) = X'_{ij} \boldsymbol{\beta}$$

- $Y_{ij}$  is the response of the *ith* individual at the *jth* occasion and  $X_{ij}$  is the corresponding *p*-dimensional covariate vector
- The mean function does not include any random effects, and no joint distributional assumptions are required in some marginal models, e.g., the generalized estimating equations (GEE) method

## Marginal models...2

To accommodate within-subject correlation in the analysis, the covariance matrix of the *ith* response Y<sub>i</sub> is defined as

$$V_i = A_i^{1/2} R_i(\alpha) A_i^{1/2}$$

- ✤ A<sub>i</sub> is diagonal matrix with elements  $Var(y_{ij})$  and  $R_i(\cdot)$  is the working correlation matrix, which is specified by the user
- The selection of the working correlation matrix depends on the type of withinsubject correlations, e.g., exchangeable, auto-regressive, unstructured, etc.



#### **Analysis of Nutrition Surveillance Data**



#### An Example of Longitudinal Data...1

- For this example, the data were obtained from 90 surveillance sites
- The surveillance sites are distributed in the rural, non-slum urban, and slum urban areas of eight administrative divisions of Bangladesh

20 24

✤ Nutritional data were captured from 3,005 children in 2018 and 2023

#### An Example of Longitudinal Data...2

- ✤ Responses
  - Height-for-age z-score (HAZ), Weight-for-age z-score (WAZ), and Body mass index z-score (BMIZ)
- Predictors
  - Mother and father education, religion, division, place of residence, children's age and sex, wave
  - Access to improved sanitation, food security, consumption of processed food, household size, wealth index, dietary diversity



#### **Distributions of responses**







| Characteristic         | 2018 <sup>1</sup><br>N = 3,005 | 2023 <sup>1</sup><br>N = 3,005 |
|------------------------|--------------------------------|--------------------------------|
| HAZ                    | -1.43 (1.27)                   | -1.02 (1.11)                   |
| WAZ                    | -1.30 (1.15)                   | -1.44 (1.23)                   |
| BMIZ                   | -0.59 (1.11)                   | -1.18 (1.23)                   |
| <sup>1</sup> Mean (SD) |                                |                                |

2018 2023

#### **Descriptive Statistics of Responses**

DAN 20 24

#### Stunting

|             | 2023                    |           |  |
|-------------|-------------------------|-----------|--|
| 2018-19     | Not Stunted Stunted     |           |  |
| Not Stunted | 1941 (96.1%)            | 78 (3.9%) |  |
| Stunted     | 513 (54.9%) 422 (45.1%) |           |  |

|                    | 2023                        |             |  |  |
|--------------------|-----------------------------|-------------|--|--|
| 2018-19            | Not Underweight Underweight |             |  |  |
| Not<br>Underweight | 1834 (83.7%)                | 78 (16.3%)  |  |  |
| Underweight        | 179 (22.5%)                 | 615 (77.5%) |  |  |

**Underweight** 

#### BMI

|                       | 2023        |               |                    |  |
|-----------------------|-------------|---------------|--------------------|--|
| 2018-19               | Underweight | Normal weight | Overweight + Obese |  |
| Underweight           | 362 (77.5%) | 101 (21.6%)   | 4 (0.9%)           |  |
| Normal weight         | 671 (29.2%) | 1511 (65.7%)  | 117 (5.1%)         |  |
| Overweight +<br>Obese | 18 (7.5%)   | 164 (68.6%)   | 57 (23.8%)         |  |

40

#### **Descriptive Statistics of Selected Predictors...1**

D4N 20 24

Distributions of parents' educational levels



| Characteristic                | N = 3,005 <sup>1</sup> |
|-------------------------------|------------------------|
| Girl                          | 1,557 (52%)            |
| Child age (in yrs)            | 2.69 (1.28)            |
| Area of residence             |                        |
| Rural                         | 2,380 (80%)            |
| Urban-non-slum                | 312 (10%)              |
| Urban-slum                    | 313 (10%)              |
| <sup>1</sup> n (%); Mean (SD) |                        |



#### **Descriptive Statistics of Selected Predictors...2**



#### **Descriptive statistics of selected predictors...3**

DAN 20 24

| Characteristic                  | 2018<br>N = 3,005 | 2023<br>N = 3,005  | Characteristic                | 2018<br>N = 3,005 | 2023<br>N = 3,005 |
|---------------------------------|-------------------|--------------------|-------------------------------|-------------------|-------------------|
| Food security                   |                   |                    | Wealth index                  |                   |                   |
| Secure                          | 1,751 (58%)       | 1,800 (60%)        | lowest                        | 597 (20%)         | 598 (20%)         |
| Mild-insecure                   | 746 (25%)         | 727 (24%)          | second                        | 605 (20%)         | 600 (20%)         |
| Mod+sev-insecure                | 508 (17%)         | 476 (16%)          | middle                        | 605 (20%)         | 611 (20%)         |
| Dietary diversity (>=5)         | 1,274 (43%)       | 1,483 (49%)        | fourth                        | 609 (20%)         | 600 (20%)         |
| Processed food intake (any)     | 2,439 (82%)       | 2,220 (80%)        | highest                       | 589 (20%)         | 594 (20%)         |
| Any morbidity in last two weeks | 1,835 (61%)       | 1,127 (38%)        | Access to improved sanitation | 1,784 (59%)       | 2,055 (68%)       |
| <sup>1</sup> n (%)              |                   | <sup>1</sup> n (%) | 1                             | 1                 |                   |



#### **Time-dependent predictors...1**

- In a longitudinal study, predictors could be either fixed or time-dependent depending on whether values of the variable can change over time or not
- Fixed predictors
  - Sex of the child, parent's educational level, place of residence, division, etc.
- Time-dependent predictors
  - Improved sanitation, wealth index, food insecurity, area of residence, etc.



#### **Time-dependent predictors...2**

Distributions of households with Food security over the study period

|                                   | 2023         |               |                             |  |  |
|-----------------------------------|--------------|---------------|-----------------------------|--|--|
| 2018-19                           | Secure       | Mild-insecure | Moderate to severe insecure |  |  |
| Secure                            | 1207 (69.0%) | 365 (20.9%)   | 178 (10.2%)                 |  |  |
| Mild-insecure                     | 377 (50.6%)  | 223 (29.9%)   | 145 (19.5%)                 |  |  |
| Moderate to<br>severe<br>insecure | 216 (42.5%)  | 139 (27.4%)   | 153 (30.1%)                 |  |  |

| ## | # A | tibble:     | 6,010 $\times$ | 5           |             |               |
|----|-----|-------------|----------------|-------------|-------------|---------------|
| ## |     | unique_ic   | wave           | HAZ         | edu_m       | Food_s        |
| ## |     | <chr></chr> | <fct></fct>    | <dbl></dbl> | <fct></fct> | <fct></fct>   |
| ## | 1   | 10101       | 2018           | -1.94       | 5-9         | Secure        |
| ## | 2   | 10101       | 2023           | -2.04       | 5-9         | Mild-insecure |
| ## | 3   | 10103       | 2018           | -0.343      | 0-4         | Mild-insecure |
| ## | 4   | 10103       | 2023           | -1.29       | 0-4         | Mild-insecure |
| ## | 5   | 10107       | 2018           | -2.11       | >=10        | Secure        |
| ## | 6   | 10107       | 2023           | 0.307       | >=10        | Secure        |
| ## | 7   | 10108       | 2018           | -1.86       | >=10        | Secure        |
| ## | 8   | 10108       | 2023           | -0.247      | 0-4         | Secure        |
| ## | 9   | 10120       | 2018           | NA          | 5-9         | Secure        |
| ## | 10  | 10120       | 2023           | 2.72        | 5-9         | Secure        |
| ## | # i | 6,000 m     | ore rows       | 5           |             |               |



#### Long and Wide Format Data

## Long and Wide format data

- In a longitudinal study, more than one observations are collected on each subject, and data can be represented in either long or wide format
- In wide format data, there is one row for observations of each unit, where as in long format data, there is more than one row for observations of each unit

20 24

#### Wide format data

#### > Wdat

| ## | # / | A tibble:   | 3,005 ×     | 5           |             |             |
|----|-----|-------------|-------------|-------------|-------------|-------------|
| ## |     | unique_ic   | y_2018      | y_2023      | edu_m       | sex         |
| ## |     | <chr></chr> | <dbl></dbl> | <dbl></dbl> | <fct></fct> | <fct></fct> |
| ## | 1   | 10101       | -1.94       | -2.04       | 5-9         | girl        |
| ## | 2   | 11101       | -3.28       | -2.12       | 5-9         | girl        |
| ## | 3   | 13101       | -0.426      | -0.681      | 5-9         | girl        |
| ## | 4   | 21101       | -1.68       | -1.53       | 0-4         | girl        |
| ## | 5   | 23101       | -1.65       | -0.862      | 0-4         | girl        |
| ## | 6   | 25101       | -2.56       | -0.972      | 5-9         | boy         |
| ## | 7   | 26101       | -2.06       | -1.17       | >=10        | boy         |
| ## | 8   | 27101       | -0.152      | -0.569      | 5-9         | boy         |
| ## | 9   | 28101       | -0.458      | 0.817       | 0-4         | boy         |
| ## | 10  | 30101       | -0.459      | -0.044      | >=10        | girl        |
|    |     |             |             |             |             |             |

## # 2,995 more rows

#### Long format data

#### > Ldat

DAN 20 24

| ## | # A tibble: | 6,010       | × 5         |             |             |
|----|-------------|-------------|-------------|-------------|-------------|
| ## | unique_id   | l edu_m     | sex         | time        | HAZ         |
| ## | <chr></chr> | <fct></fct> | <fct></fct> | <chr></chr> | <dbl></dbl> |
| ## | 1 10101     | 5-9         | girl        | y_2018      | -1.94       |
| ## | 2 10101     | 5-9         | girl        | y_2023      | -2.04       |
| ## | 3 11101     | 5-9         | girl        | y_2018      | -3.28       |
| ## | 4 11101     | 5-9         | girl        | y_2023      | -2.12       |
| ## | 5 13101     | 5-9         | girl        | y_2018      | -0.426      |
| ## | 6 13101     | 5-9         | girl        | y_2023      | -0.681      |
| ## | 7 21101     | 0-4         | girl        | y_2018      | -1.68       |
| ## | 8 21101     | 0-4         | girl        | y_2023      | -1.53       |
| ## | 9 23101     | 0-4         | girl        | y_2018      | -1.65       |
| ## | 10 23101    | 0-4         | girl        | y_2023      | -0.862      |

## # 6,000 more rows

CONNECTING THE DOTS ACROSS SYSTEMS

#### $\mathbf{Wide} \rightarrow \mathbf{Long}$

DAN 20 24

pivot\_longer( data = Wdat, cols = c(y\_2018, y\_2023), names\_to = "time", values\_to = "HAZ"

| ## | # A | A tibbl     | e: 6,010 ×  | 5           |             |             |
|----|-----|-------------|-------------|-------------|-------------|-------------|
| ## |     | unique      | _id edu_m   | sex         | time        | HAZ         |
| ## |     | <chr></chr> | <fct></fct> | <fct></fct> | <chr></chr> | <dbl></dbl> |
| ## | 1   | 10101       | 5-9         | girl        | y_2018      | -1.94       |
| ## | 2   | 10101       | 5-9         | girl        | y_2023      | -2.04       |
| ## | 3   | 11101       | 5-9         | girl        | y_2018      | -3.28       |
| ## | 4   | 11101       | 5-9         | girl        | y_2023      | -2.12       |
| ## | 5   | 13101       | 5-9         | girl        | y_2018      | -0.426      |
| ## | 6   | 13101       | 5-9         | girl        | y_2023      | -0.681      |
| ## | 7   | 21101       | 0-4         | girl        | y_2018      | -1.68       |
| ## | 8   | 21101       | 0-4         | girl        | y_2023      | -1.53       |
| ## | 9   | 23101       | 0-4         | girl        | y_2018      | -1.65       |
| ## | 10  | 23101       | 0-4         | girl        | y_2023      | -0.862      |
| ## | # i | 6.000       | more rows   |             |             |             |

CONNECTING THE DOTS ACROSS SYSTEMS

#### **Long** $\rightarrow$ Wide

DAN 20 24

pivot\_wider(
 data = Ldat,
 id\_cols = unique\_id,
 names\_from = time,
 values\_from = HAZ
)

| ## | # A | A tibb      | le: 3, | ,005 ×      | 3           |
|----|-----|-------------|--------|-------------|-------------|
| ## |     | unique      | e_id y | _2018       | y_2023      |
| ## |     | <chr></chr> |        | <dbl></dbl> | <dbl></dbl> |
| ## | 1   | 10101       | -      | -1.94       | -2.04       |
| ## | 2   | 11101       | -      | -3.28       | -2.12       |
| ## | 3   | 13101       | -      | -0.426      | -0.681      |
| ## | 4   | 21101       | -      | -1.68       | -1.53       |
| ## | 5   | 23101       | -      | -1.65       | -0.862      |
| ## | 6   | 25101       | -      | -2.56       | -0.972      |
| ## | 7   | 26101       | -      | -2.06       | -1.17       |
| ## | 8   | 27101       | -      | -0.152      | -0.569      |
| ## | 9   | 28101       | -      | -0.458      | 0.817       |
| ## | 10  | 30101       | -      | -0.459      | -0.044      |
| ## | #   | 2,995       | more   | rows        |             |



#### **Regression Models for Longitudinal Data**

#### Linear mixed effects model...1

Considered a linear mixed effects mode for HAZ with random intercept

D4

Wave, age at the baseline (centered at 2 years), sex of the child, and area of residence are included in the model

20 24

The R function Ime4::Imer is used to fit the linear mixed effects model



#### Linear mixed effects model...2

> library(lme4)
> mod1 <- lmer(formula = HAZ ~ wave + age2018c + Girl + area +
 (1|unique\_id), REML = TRUE, data = dat\_f)</pre>

The formula argument contains both the fixed and random effects

- The term (1|unique\_id) indicates a random intercept model is considered for the HAZ score
- Since we have only two responses for each child, we cannot consider a model with a random slope

#### **LME: Estimates of model parameters**

## # A tibble:  $6 \times 4$ 

| ## |   | var                | Estimate    | se          | p_value     |
|----|---|--------------------|-------------|-------------|-------------|
| ## |   | <chr></chr>        | <dbl></dbl> | <dbl></dbl> | <chr></chr> |
| ## | 1 | (Intercept)        | -1.51       | -38.3       | <0.001      |
| ## | 2 | wave2023           | 0.402       | 23.6        | <0.001      |
| ## | 3 | age2018c           | 0.009       | 1.07        | 0.142       |
| ## | 4 | Girl               | 0.035       | 0.875       | 0.191       |
| ## | 5 | areaUrban-non-slum | 0.546       | 8.30        | <0.001      |
| ## | 6 | areaUrban-slum     | -0.098      | -1.50       | 0.067       |

The fixed effects parameters have population-averaged interpretations

D4

- Average HAZ score increases by 0.402 over 2018 to 2023
- The average HAZ score of children from non-slum Urban areas is 0.035 unit higher than those of Rural area



#### LME: Random effects and error variances

| ## | Groups    | Name        | Std.Dev. |
|----|-----------|-------------|----------|
| ## | unique_id | (Intercept) | 0.986    |
| ## | Residual  |             | 0.656    |

#### LME: Model selection criteria

## # A tibble: 1 × 7
## nobs sigma logLik AIC BIC REMLcrit df.residual
## <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 5959 0.656 -8509. 17034. 17087. 17018. 5951

#### LME: ICC

## # Intraclass Correlation Coefficient
##
## ICC: 0.693
##



#### **LME: Model Diagnostics**

#### (a) Random effects residuals



(b) Within-subject residuals



# **Observed response and predictions of 2-year-old girls from food-secured families in rural area**

DAN 20 24



We consider modeling HAZ score with wave, age at 2018, sex of the child, and area as predictors

20 24

- Since there are only two responses for each child, there will be only one association parameter, i.e., exchangeable and unstructured correlation structures are the same
- R function geepack::geegIm is used for the fit, which requires specifying the idvariable and correlation structure

#### Code for GEE

Estimates of model parameters

| > library(geepack)                             | ##                        | Estimate S | Std.err P | r(> W ) |
|------------------------------------------------|---------------------------|------------|-----------|---------|
| > mod2 <- geeglm(                              | ## (Intercept)            | -1.509     | 0.040     | 0.000   |
| formula = HAZ ~ wave + age2018c + Girl + area, | ## wave2023               | 0.402      | 0.017     | 0.000   |
| id = unique_id,                                | ## age2018c               | 0.009      | 0.008     | 0.271   |
| corstr = "exchangeable",                       | ## Girl                   | 0.035      | 0.040     | 0.382   |
| family = "gaussian",<br>data = dat_f           | ## areaUrban-non-<br>slum | 0.546      | 0.071     | 0.000   |
| )                                              | ## areaUrban-slum         | -0.098     | 0.063     | 0.122   |

**20 24** 

Interpretations are similar to multiple linear regression models



*Correlation parameter estimate* 

## # A tibble: 1 × 2
## alpha se\_alpha
## <dbl> <dbl>
## 1 0.675 0.0169

#### Model selection criteria

| ## | QIC      | QICu Quasi Lik     | CIC   | params | QICC     |
|----|----------|--------------------|-------|--------|----------|
| ## | 8294.836 | 8289.003 -4138.502 | 8.916 | 6.000  | 8294.873 |



- The GEE method can be used to model time-dependent predictors, such as a household's food security status, wealth index, etc.
- To model a time-dependent predictor, the correlation structure must be specified as *independence* in the GEE routine

#### Time-dependent predictor food security status (Food\_s)

DAN 20 24

| ## | # A tibble  | $10 \times 4$ |               |             |
|----|-------------|---------------|---------------|-------------|
| ## | unique_i    | d wave        | Food_s        | sex         |
| ## | <chr></chr> | <fct></fct>   | <fct></fct>   | <fct></fct> |
| ## | 1 1179      | 2018          | Mild-insecure | boy         |
| ## | 2 1179      | 2023          | Mild-insecure | boy         |
| ## | 3 24212     | 2018          | Mild-insecure | girl        |
| ## | 4 24212     | 2023          | Secure        | girl        |
| ## | 5 24645     | 2018          | Mild-insecure | girl        |
| ## | 6 24645     | 2023          | Secure        | girl        |
| ## | 7 78187     | 2018          | Secure        | boy         |
| ## | 8 78187     | 2023          | Secure        | boy         |
| ## | 9 85268     | 2018          | Secure        | girl        |
| ## | 10 85268    | 2023          | Secure        | girl        |

#### Code for GEE with time-dependent predictor Food\_s

DA

```
> mod2a <- geeglm(
   formula = HAZ ~ wave + age2018c + Girl + area + Food_s,
   id = unique_id, corstr = "independence", family = "gaussian",
   data = dat_f)</pre>
```

#### GEE: Estimates of model parameters

| ## |                        | Estimate | Std.err | Pr(> W ) |
|----|------------------------|----------|---------|----------|
| ## | (Intercept)            | -1.412   | 0.042   | 0.000    |
| ## | wave2023               | 0.404    | 0.018   | 0.000    |
| ## | age2018c               | 0.009    | 0.008   | 0.230    |
| ## | Girl                   | 0.034    | 0.039   | 0.386    |
| ## | areaUrban-non-slum     | 0.522    | 0.070   | 0.000    |
| ## | areaUrban-slum         | -0.053   | 0.063   | 0.399    |
| ## | Food_sMild-insecure    | -0.217   | 0.040   | 0.000    |
| ## | Food_sMod+sev-insecure | -0.306   | 0.045   | 0.000    |



#### **Comparisons between two models**

DAN 20 24

#### GEE: Model selection criteria

| ## | QIC        | QICu | Quasi Lik | CIC    | params | QICC |
|----|------------|------|-----------|--------|--------|------|
| ## | mod2 8295  | 8289 | -4139     | 8.912  | . 6    | 8295 |
| ## | mod2a 8201 | 8194 | -4089     | 11.090 | 8      | 8201 |



#### The final model

We considered the GEE method to fit the final model for HAZ

- The final model contains the following predictors
  - Wave, parents' education level, wealth index, food security, access to improved sanitation, area, division, household size, religion
  - Child age and sex

#### Estimates of the final model parameters

DAN 20 24

| Term               | Estimate | P-value |
|--------------------|----------|---------|
| wave2023           | 0.393    | <0.001  |
| edu_m5-9           | 0.128    | 0.003   |
| edu_m>=10          | 0.326    | <0.001  |
| edu_f5-9           | 0.089    | 0.030   |
| edu_f>=10          | 0.286    | <0.001  |
| divisionChattogram | -0.269   | <0.001  |
| divisionDhaka      | -0.170   | 0.053   |
| divisionMymensingh | -0.267   | 0.001   |
| divisionKhulna     | -0.187   | 0.023   |
| divisionRajshahi   | -0.145   | 0.068   |
| divisionRangpur    | 0.004    | 0.960   |
| divisionSylhet     | -0.652   | <0.001  |

| Term                     | Estimate | P-value |
|--------------------------|----------|---------|
| areaUrban-non-slum       | 0.298    | <0.001  |
| areaUrban-slum           | -0.067   | 0.290   |
| quint_comsecond          | 0.016    | 0.745   |
| quint_commiddle          | 0.059    | 0.220   |
| quint_comfourth          | 0.192    | <0.001  |
| quint_comhighest         | 0.232    | <0.001  |
| proc_foodtimes           | -0.003   | 0.020   |
| Food_sMild-insecure      | -0.081   | 0.037   |
| Food_sMod+sev-insecure   | -0.117   | 0.010   |
| sexgirl                  | 0.037    | 0.322   |
| age2018c                 | 0.011    | 0.159   |
| religionOther than Islam | -0.029   | 0.633   |
| imp_saniNot improved     | -0.045   | 0.175   |
| insuf_ddFood groups >= 5 | 0.030    | 0.334   |



#### Summary

- Linear mixed effects (LME) model and generalized estimating equations (GEE) are considered for modeling correlated HAZ scores
- R codes for preparing the data for fitting LME and GEE are discussed
- Interpretations of estimates, model selection criteria, etc. are described for LME and GEE fits

#### Summary from the Final model

- ✤ Average HAZ score increased by 0.393 units over the years 2018 to 2023
- The average HAZ score improved for children whose parents had at least 5 years of education compared to those with less than 5 years
- The average HAZ score for children is higher in non-slum urban areas compared to rural areas, with no significant difference between children from rural and urban slum areas

#### Summary from the Final model

20 24

- Average HAZ score is relatively higher among children from wealthy and lower in food-insecure families and who eat processed food
- Sex and age of the child, household size, religion, dietary diversity, and access to improved sanitation were not significantly associated with the average HAZ score

• Participants of the study

20 24

DA

- Investigators of the study
- IPHN, BBS, JPGSPH staff
- TAG Members
- District Commissioners
- Civil surgeons
- Upazilla Nirbahi Officers
- Upazilla Health & Family Planning Officers, Upazilla Family Planning Officers
- Mayors
- Councilors
- Union Parishad Chairmen
- Union Parishad Members
- Local elites

#### Acknowledgement



# Thank You