

DELIVERING FOR NUTRITION IN SOUTH ASIA CONNECTING THE DOTS ACROSS SYSTEMS

December 3, 2024 • Colombo, Sri Lanka

Optimizing Agrobiodiversity for Nutritional Diversity: An Analysis of Spatial Patterns and Sustainable Interventions in South Asia

Mustafa Kamal, Alison Laing, Ravi Nandi, Timothy J. Krupnik International Maize and Wheat Improvement Center

DELIVERING FOR NUTRITION IN SOUTH ASIA

Background

Managing production diversity at species and functional levels is crucial for optimizing agricultural biodiversity

Methods

- Data and indicators: sub-national crop production data (2016-2021) at district level, MDD-W (Minimum Dietary Diversity for Women), HDDS (Household Dietary Diversity Score), and national food composition tables.
- Used Shannon Diversity Index for crop diversity calculations.
- Applied Global Moran's I and Optimised Hotspot Analysis (Getis-Ord Gi*) to analyze the spatial pattern and to identify the hotspots and coldspots.

Results

Spatial Clustering

 Non-food crops exhibited the strongest clustering (Moran's I = 0.54). Cereals and oilseeds showed moderate clustering (~0.35)

Diversity score

- Bangladesh had the highest median crop varietal diversity (0.63). Nepal led in crop species diversity (0.72).
- Pakistan led in functional dietary diversity (0.54) and nutritional diversity (0.52), while Bangladesh had the lowest scores.

Hotspot and coldspot output and parameter

- Identified significant districts using a 229km distance band for variety, species, and functional dietary diversity.
- 455 significant districts for crop variety diversity, 384 for species diversity, and 277 for functional dietary diversity.
- Functional nutritional diversity hotspots: 705 significant districts identified using a 332-km distance band after FDR correction.

0 0.1 0.2 0.3 0.4 0.5 0.6

Fig 1: Global Moran's I statistics for major crops (production area fraction) and agrobiodiversity components reveals patterns of clustering or dispersion among similar features

Fig 3: Diversity hotspot (red), coldspot (bule) and nonsignificant clusters (light grey) for a) Crop varietal diversity, b) Crop species diversity, c) Functional dietary diversity and d) Functional nutritional diversity.

Implications

- District level key regions were identified in Bangladesh, India, Nepal and Pakistan for improving agrobiodiversity and functional diversity.
- Identified hotspot and coldspot can help optimize agrobiodiversity to boost dietary and nutritional sufficiency in targeted areas for policymakers and researchers

CONNECTING THE DOTS ACROSS SYSTEMS