

DELIVERING FOR NUTRITION IN SOUTH ASIA CONNECTING THE DOTS ACROSS SYSTEMS

Contribution of Nature based Solutions (NbS) to Food Security Evidence from India and Vietnam

Sedi Anne Boukaka (with Carlo Azzarri and Kristin Davis) IFPRI

CONNECTING THE DOTS ACROSS SYSTEMS

Survey design & sample composition

 CGIAR initiative on Nature-Positive Solutions aims to reimagine, collaboratively create and implement nature-positive solutions for agrifood systems that equitably support food and livelihoods and ensure that agriculture is a net positive contributor to biodiversity and nature

India

- Selection of the final sample was supported by our local counterpart, which provided list of beneficiaries and control HHs + Klls
 Data collection: March 2023
- Sample size: 1,227 hhs in 27 communities (312 in 9 Kalsubai-, 317 in 8) -Igatpuri-, and 596 in 8 -Shahada-)

Vietnam

- Coverage: Sapa and Mai Son districts
- Treated: random sampling of households in the 8 identified treated villages
- Control: random selection through two-stage sampling within communities similar to treated villages by agroecological zones
- Sample size: 1,153 HH

In the areas surveyed in India, cultural norms favoring vegetarianism lead to under-reporting of meat&fish consumption, hence to ensure cross-country comparability, all food indices exclude meat&fish

Adoption of NbS

- The survey listed up to 48 Nature Based Solutions (NbS), depending on the country
- HH practice 4.9 NbS on average in Vietnam, vs 1.4 in India
- Adoption Intensity:
 - Non-Adopter: Reported practicing 0 NbS
 - Low: 1-5 practices in Vietnam, 1-2 in India
 - High: >=5 practices in Vietnam, >=3 in India

DELIVERING FOR NUTRITION IN SOUTH ASIA

Descriptive statistics: Dietary Diversity (excluding meat/fish)

ReDD index 6 •

Beyond energy (Kcal), NbS adoption intensity is positively associated with a diverse diet (HDDS) and negatively with diet deprivation (ReDD)

- HDDS (Household Dietary Diversity Score): count of food groups that a household has consumed over the past 7 days
- ReDD (Reference Diet Deprivation) index: incidence, breadth, and depth of diet deprivation across multiple food groups

Productivity trade-offs Vietnam

- Lack of difference in yield: NbS solutions can support productivity without necessarily relying on environmentally unsustainable inputs?
- 83% of the sample reported using NbS for more than 5 years

Results

• Model 1: multivariate regression $Y_{hc} = \alpha + \beta_1 A doption Intensity_{hc} + \beta_2 X + \delta + \varepsilon_{hc}$

Where h and c are indices for household and country (Vietnam and India); Y represents the nutrition and food security outcomes of interest; and X is a vector of household-level covariates. δ is an indicator for each country

Model 2: multivalued treatment effect (*ipw* regression adjustment estimator)

1) Treatment model:
$$Pr(T = i) = g(X; \theta) + \varphi; i = 0,1,2$$

(2) Outcome model: $y = f(\mathbf{Z}; \boldsymbol{\beta}) + \varepsilon$

where $g(\cdot)$ and $f(\cdot)$ are assumed functional forms; **Z** is a vector of covariates affecting y (and whose elements may overlap with those of X); β and θ are vectors of unknown parameters; φ is selection model error term assumed to have a normal distribution; ε is outcome model error assumed to be independent and identically distributed (i.i.d.)

	Vietnam				India				Pooled			
	Log Calorie	Log Fat	Log Carb	ReDD index	Log Calorie	Log Fat	Log Carb	ReDD index	Log Calorie	Log Fat	Log Carb	ReDD index
					MOD	EL 1						
Adoption type (Base=Non adopters)												
Low Adoption	0.05	0.06	0.02	-0.03*	0.11*	0.09	0.17***	-0.02*	0.08**	0.08	0.10**	-0.02**
	(0.044)	(0.052)	(0.047)	(0.014)	(0.058)	(0.094)	(0.061)	(0.012)	(0.038)	(0.057)	(0.040)	(0.009)
High Adoption	0.10**	0.19***	0.07	-0.08***	0.28***	0.42***	0.27***	-0.10***	0.17***	0.28***	0.16***	-0.09***
	(0.041)	(0.048)	(0.043)	(0.014)	(0.075)	(0.108)	(0.080)	(0.017)	(0.037)	(0.052)	(0.039)	(0.010)
MODEL 2												
Adoption type (Base=Non adopters)												
Low Adoption	0.05	0.09*	0.01	-0.03*	0.10*	0.08	0.16***	-0.02*	0.05	0.06	0.06	-0.02*
·	(0.043)	(0.048)	(0.046)	(0.014)	(0.058)	(0.093)	(0.061)	(0.012)	(0.035)	(0.050)	(0.037)	(0.010)
High Adoption	0.10***	0.22***	0.07	-0.08***	0.20**	0.32***	0.21**	-0.08***	0.14***	0.25***	0.11**	-0.08***
	(0.039)	(0.044)	(0.041)	(0.013)	(0.077)	(0.108)	(0.087)	(0.016)	(0.040)	(0.053)	(0.045)	(0.011)
Observations	1,073	1,073	1,073	1,073	816	816	816	817	1,889	1,889	1,889	1,890

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Covariates include place of residence, household composition variables, education of the head, number of tropical livestock units (TLU) owned, area of parcels cultivated in hectare, and wealth index

Conclusions

- Adoption of NbS practices is positively associated with several outcomes related to food security:
 - Adoption positively correlated with energy/Kcal and macronutrients
 - Multivariate regression & MVTE confirm significant positive correlation between adoption and calorie + macronutrients
 - More research is needed to disentangle attribution of NbS to food security and nutrition
- Data available on IFPRI Dataverse (open access)
 - Vietnam (India coming soon): <u>https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PZVGOH</u>

