

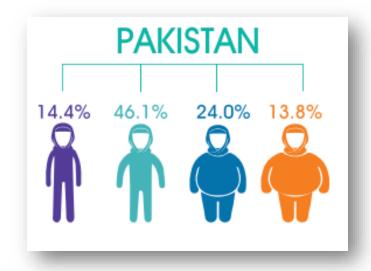
Efficacy of a Mobile Health Intervention in Improving Micronutrient Supplement Use during Pregnancy- a Randomized Controlled Trial

Evidence from Pakistan

Presenter
Khadija Vadsaria
Aga Khan University, Pakistan

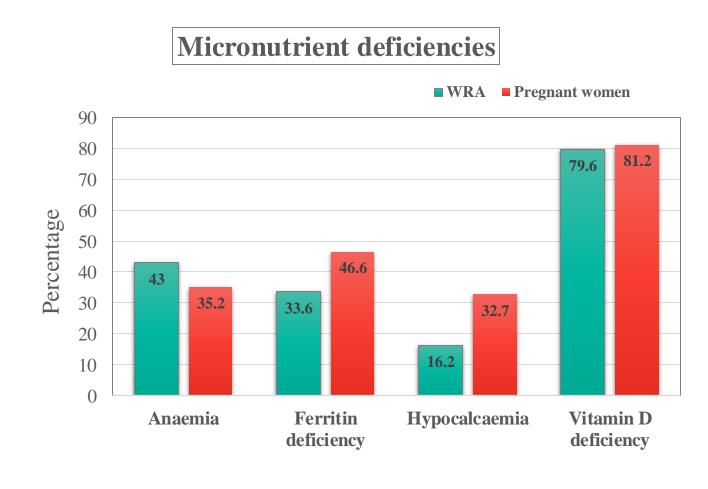
Supervisor

Dr Rozina Nuruddin, Aga Khan University


Research Team

Dr Nuruddin Mohammed, Aga Khan University, Hospital Dr Saleem Sayani, Aga Khan Development Network Mr Iqbal Azam, Aga Khan University

Background and Rationale



Triple Burden of Malnutrition in Women of Reproductive Age

Minimum
Dietary
Diversity
27.6%

Micronutrient supplement use during pregnancy

Iron Folic Acid

33.4%

Calcium

26.8%

Multiple Micronutrient

6.2%

Antenatal Care

Widely used to educate women

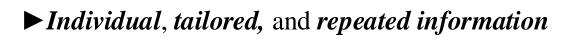
Supports behavior change

Usual process:

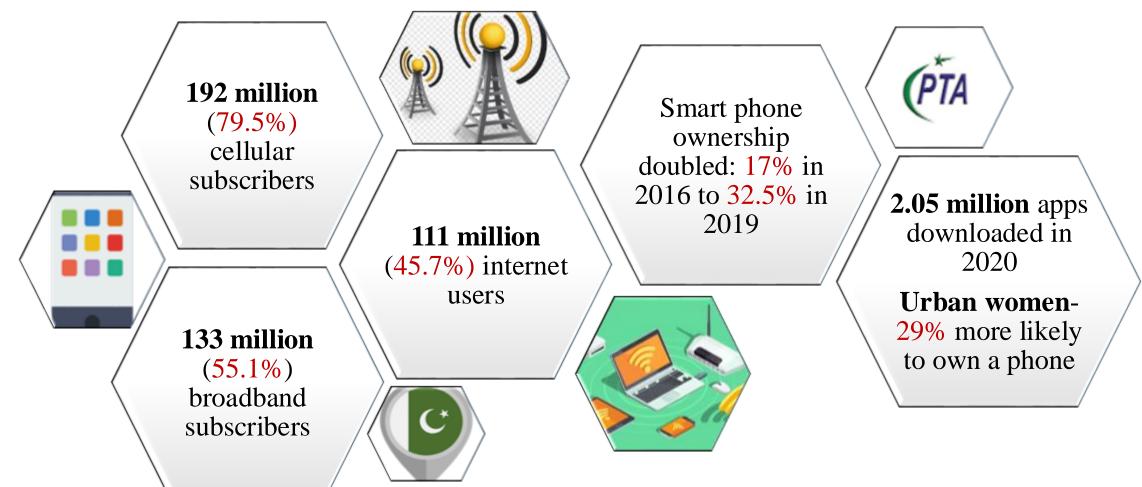
- * Face-to-face consultation
- * Counselling pregnancy stage
- * Time bound, brief and non-personalized
- *Compliance not assessed

Communication often insufficient

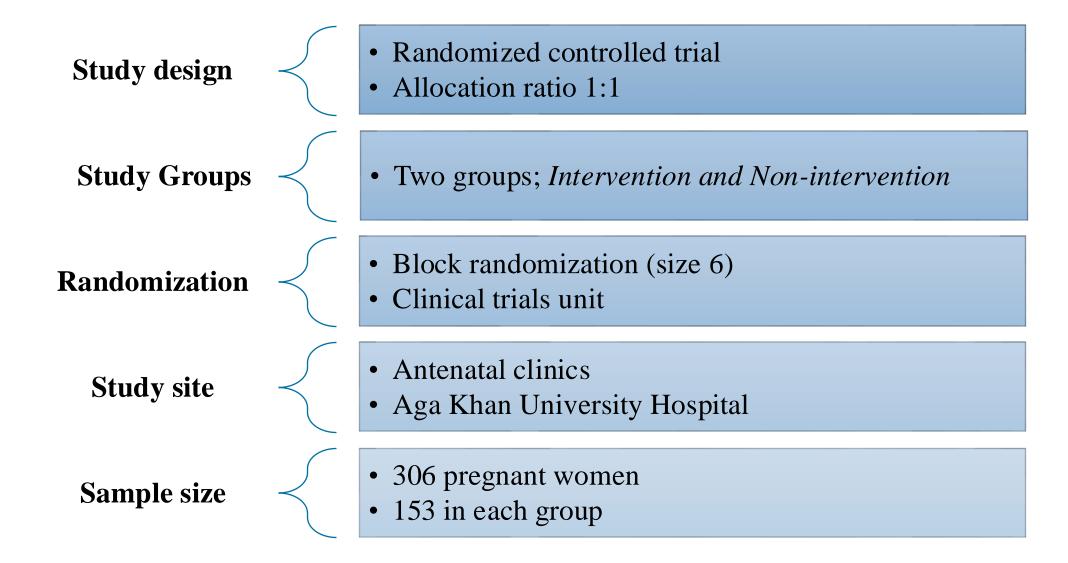
Low quality


- ► Via mobile communication devices
- ► Operates through *wireless technology or Bluetooth*

▶ Device frequently carried- *mobile phones*, smart phones and tablets



► Media- SMS, voice or video calls, MMS and Apps


Digital Landscape in Pakistan

Research Objective

To assess the efficacy of mHealth intervention in improving micronutrient supplement use among pregnant women compared to traditional face-to-face counselling

Eligibility Criteria

- Pregnant women in first trimester
- Adults (at least 18 years)
- Registered at Aga Khan University Hospital for delivery
- Possessed personal smartphone, with internet connection.
- Able to read and write in Roman Urdu or English
- Consented to participate

Exclusion

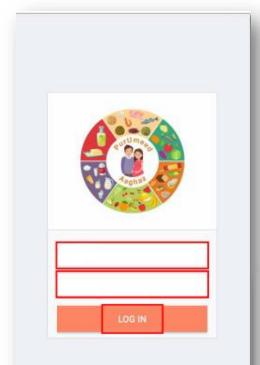
- Had dietary restrictions due to comorbidities
- Used regular medications
- Diagnosed with serious medical condition- kidney or liver diseases, autoimmune disorders
- Had language barrier

Study Groups

Intervention group

- Mobile app "PurUmeed Aaghaz"- a hopeful beginning
- Features: Personalized recommendations and push messages

Non-intervention group


• Standard face-to-face counselling

Counselling

• Folic acid (0.4 mg), iron (30-60 mg), calcium (1500-2000 mg), and vitamin D3 (200 IU)

Follow-ups

• At 6, 12, 18 and 24 weeks after enrollment

Statistical Analysis

- Compared sociodemographic characteristics, obstetric history and anthropometric assessment using Chisquare, Fisher exact or t-test
- Panel data and random effects analysis
- Unadjusted and adjusted analysis using binary logistic and linear regression
- Supplement use scored as **0** (7 days a week), **1.5** (4-6 days) and **3** (0-3 days)
- We combined the scores of **0** and **1.5** as 'adequate' and **3** as 'inadequate' categories
- Cumulative supplement use score ranged from 0 to12; higher score, inadequate use

Table 1: Baseline sociodemographic characteristics

	Intervention (n=153)	Non-intervention (n=153)	1				
Characteristics	n (%)	n (%)	p-value				
Sociodemographic characteristics							
Age (years) mean \pm SD	28.7 ± 4.3	28.1 ± 4.1	0.162				
Education, Self, University	119 (77.8)	120 (78.4)	0.890				
Occupation, Self, Employed	50 (32.7)	54 (35.3)	0.629				
Education, Spouse , University	143 (93.5)	138 (90.2)	0.297				
Monthly household income (PKR), <100,000	92 (60.1)	103 (67.3)	0.191				
Obstetric history and anthropometric assessment							
Gravida , Primi	69 (45.1)	65 (42.5)	0.645				
Vomiting	86 (56.2)	82 (53.6)	0.646				
Antiemetic use	58 (37.9)	51 (33.3)	0.403				
Body Mass Index (Kg/m ²)							
Underweight (<18.5)	10 (6.5)	14 (9.2)	0.687				
Overweight/obese (≥23)	98 (64.1)	94 (61.4)					

Characteristics	Intervention (n=153) n (%)	Non-intervention (n=153) n (%)	p-value			
Lifestyle habits						
Substance use, Self	0 (0)	5 (3.3)	0.060			
Smoker, Spouse	30 (19.6)	31 (20.3)	0.886			
Daily intake of home-cooked meals, Thrice	114 (74.5)	116 (75.8)	0.791			
Weekly consumption of:						
Savory snacks	81 (52.9)	85 (55.6)	0.646			
Sweet snacks	113 (73.9)	116 (75.8)	0.693			
Readymade meals	87 (56.9)	82 (53.6)	0.565			
Carbonated beverages	74 (48.4)	69 (45.1)	0.567			
Packaged juices	49 (32.0)	56 (36.6)	0.399			
Tea	93 (60.8)	95 (62.1)	0.814			
Coffee	10 (6.5)	10 (6.5)	>0.999			

Table 2: Improvement in micronutrient supplement use from baseline to end line

Micronutrient	Baseline (T0)		End line (T4)			Improvement (T4 –T0)		
supplements	Intervention (n=153)	Non-intervention (n=153)	p-value	Intervention (n=107)	Non-intervention (n=125)	p-value	Intervention	Non- intervention
	n (%)	n (%)		n (%)	n (%)			
Adequate use of:								
Folic acid	124 (81.0)	121 (79.1)	0.834	104 (97.2)	121 (96.8)	0.544	20%	22.4%
Iron	12 (7.8)	36 (23.5)	< 0.001	102 (95.3)	91 (72.8)	< 0.001	11.2 times	2.1 times
Calcium	47 (30.7)	9 (5.9)	< 0.001	71 (66.4)	112 (89.6)	< 0.001	1.2 times	14.2 times
Vitamin D	31 (20.3)	37 (24.2)	0.232	86 (80.4)	69 (55.2)	< 0.001	3 times	1.3 times
Cumulative supplement use score mean± SD	7.72 ± 3.05	7.87 ± 2.66	0.654	1.79 ± 2.46	2.54 ± 2.30	0.017	-76.7%	-67.7%

Table 3: Efficacy of mHealth intervention on adequacy of micronutrient supplement use

Micronutrient	Unadjus	ted	Adjusted		
supplements	OR (95% CI)	p-value	aOR (95% CI)	p-value	
Folic acid ¹	1.06 (0.59, 1.92)	0.845	1.14 (0.63, 2.07)	0.659	
Iron ²	1.24 (0.98, 1.56)	0.077	1.41 (1.06, 1.89)	0.020	
Calcium ³	0.65 (0.52, 0.81)	< 0.001	0.62 (0.47, 0.81)	< 0.001	
Vitamin D ⁴	1.83 (1.42, 2.36)	< 0.001	1.97 (1.51, 2.57)	< 0.001	
	β (95% CI)	p-value	β (95% CI)	p-value	
Cumulative supplement use score ⁵	-0.23 (-0.60, 0.14)	0.230	-0.40 (-0.79, -0.01)	0.043	

OR: Odds Ratio; aOR: adjusted Odds Ratio

B: Beta coefficient

CI: Confidence Interval

Adjusted for:

¹age, education, vomiting, gravida, smoking among spouses, and intake of savory snacks

²age, occupation, vomiting, BMI, smoking among spouses, and intake of savory snacks and carbonated beverages

³vomiting, gravida, smoking among spouses, and intake of carbonated beverages and coffee

⁴vomiting, gravida, smoking among spouses, and intake of carbonated beverages

⁵age, occupation, vomiting, smoking among spouses, and intake of home-cooked meals, savory snacks, and carbonated beverages

Conclusion and Implications

• Personalized mHealth intervention significantly improved iron and vitamin D supplement use.

• Increased mobile and internet use in Pakistan makes mHealth a convenient, affordable tool for improving pregnancy health behaviors.

• Encouraging adequate diet and micronutrient supplements are essential to improve perinatal outcomes and prevent complications.

References

- Benova L, Tunçalp Ö, Moran AC, Campbell OMR. Not just a number: examining coverage and content of antenatal care in low-income and middle-income countries. BMJ global health; 2018;(3):e000779.
- Jennings L, Yebadokpo AS, Affo J, Agbogbe M. Antenatal counseling in maternal and newborn care: use of job aids to improve health worker performance and maternal understanding in Benin. BMC Pregnancy Childbirth; 2010;(10):1-13. Doi:10.1186/1471-2393-10-75
- Kemp S. DIGITAL 2021: PAKISTAN. 2021.
- O'Dea S. Smartphone users by country worldwide 2019. 2020.
- Phommachanh S, Essink DR, Wright EP, Broerse JE, Mayxay M. Do health care providers give sufficient information and good counseling during ante-natal care in Lao PDR?: an observational study. BMC health services research; 2019;(19):1-12.
- PTA. Telecom Indicators: Pakistan Telecommunication Authority; 2024

References Cont.

- Roberts DJ, Rylands J, Sinclair D. Interventions using mobile devices (phones, smart phones, or tablets) to improve adherence to treatment for HIV or tuberculosis. Cochrane Libr; 2016. Doi:10.1002/14651858.CD012353
- Stryjak J, James H. Country overview: Pakistan A digital future. 2016.
- Sylvester G. Use of mobile phones by the rural poor: Gender perspectives from selected Asian countries: IDRC, Ottawa, ON, CA; 2016.
- UNICEF. National Nutrition Survey. Islamabad, Pakistan 2018.

Acknowledgement

- Research Team
- Funding received from the University Research Council of Aga Khan University
- Dr Ayesha Malik (Obstetrician and Gynaecologist)
- Department of Obstetrics and Gynaecology
- Research Assistant
- Study participants

