

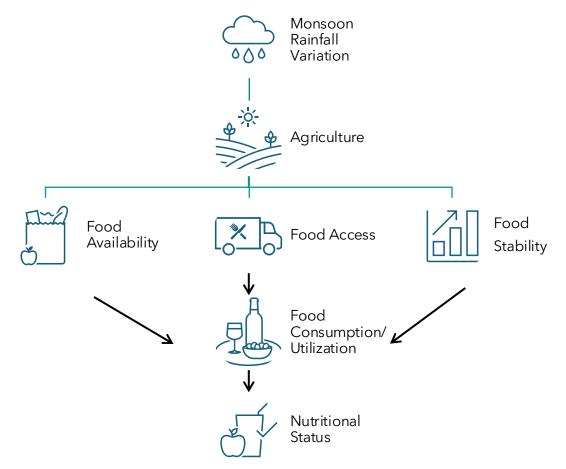
DELIVERING FOR NUTRITION IN SOUTH ASIA CONNECTING THE DOTS ACROSS SYSTEMS

December 3, 2024 • Colombo, Sri Lanka

Climate Change and Food Security Across Agro-Ecological Zones Evidence from Rural Households of Pakistan

Dr. Verda Salman

Department of Economics National University of Sciences and Technology (NUST)


CONNECTING THE DOTS ACROSS SYSTEMS

Introduction

Rationale

- Pakistan is 5th most vulnerable nation to the climate change (Global Climate Risk Index).
- More than two-third of Pakistan's area lie in semi-arid to arid climate zone (Nabeel & Athar, 2017).
- Pakistan has a diverse landscape and is divided into **10 agro-ecological zones**, each with its own peculiar environment and varied agriculture output (PARC, 2019).
- Pakistan's rain-fed **agriculture** receives more than 60 percent of annual rainfall during monsoon (wet) season (Faisal et al., 2013).
- There is evidence of inadequate nutritional intake and low dietary diversity, especially in rural households around 37 percent of the population i.e., 13 percent of the households, is facing the menace of **food insecurity** (UNICEF National Nutritional Survey, 2018).

Conceptual Framework

Based on World Food Submit (1996), World Bank Group (2023) and empirical evidence from literature.

- Studies indicate that climate-induced rainfall variability affects crop patterns and yields (Kogo et al., 2020; Kurukulasuriya et al., 2006).
- Rainfall variability affects the **nutritional quality** of diets by altering both macronutrient and micronutrient proportions in food (FAO et al., 2022; Guilia et al., 2020).
- At the World Food Submit of 1996, four key dimensions of **food security** were identified: *physical availability of food*, *economic and physical access to food*, *food utilisation*, and *stability* of these three factors over time (World Bank Group, 2023).
- In the absence of these four dimensions, food insecurity prevails resulting in **nutritional deficiencies** (Kinda & Badolo, 2019; Ludwig, 2018; Derbile et al., 2016).

Research Objectives

- To measure monsoon rainfall variability (proxy for climate change) across agroecological zones of Pakistan.
- To investigate impact of monsoon rainfall variation on food security status in rural households across agro-ecological zones of Pakistan.
- To analyze the impact of monsoon rainfall variation on food security in agricultural households with livelihood diversification.

CONNECTING THE DOTS ACROSS SYSTEMS

Data & Methodology

Data Sources

• Climate Data:

- Total Surface Precipitation (MERRA-2 Reanalysis/ mm/day with a spatial resolution of 0.5x0.625) from NASA Giovanni Earth Data. Since this study focuses on the monsoon season in Pakistan, monthly data for July, August, and September from 1981 to 2019 was considered. Eventually, the data was used to calculate monsoon rainfall variability for 2013, 2015, and 2018, relative to 30-year historic averages, respectively.
- Household Data:
 - 3 rounds of Pakistan Social & Living Standard Measurement Survey/Household Integrated Economic Survey (PSLM/HIES) **2013-14**, **2015-16**, and **2018-19**.
 - HIES 2013-14: 17,989 households (11,755 rural households)
 - HIES 2015-16: 24,238 households (8,083 rural households)
 - HIES 2018-19: 24,809 households (15,936 rural households)
 - A stratified two-stage sample design is adopted for these surveys.

Climate Variation Indicators

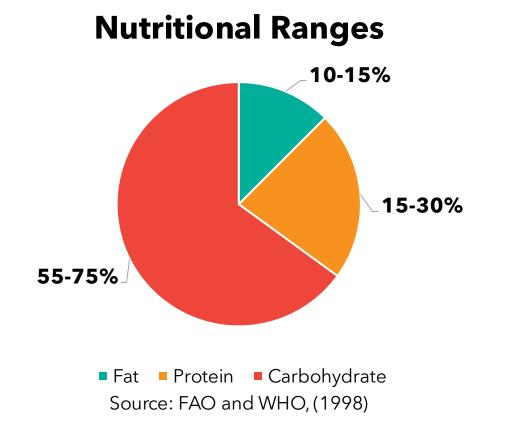
Rainfall Variation (z-score)

$$z = \frac{x - \mu}{\sigma}$$

z = standard score x = observed value $\mu =$ 30-year historic mean $\sigma =$ 30-year historic standard deviation

Lowest: z < -1.5Lower: -1.5 < z < -1Moderate: -1 < z < 1Higher: 1 < z < 1.5Highest: z > 1.5 Coefficient of Variation

 $\theta = \frac{\sigma}{\mu}$


 θ = coefficient of variation σ = 30-year historic standard deviation μ = 30-year historic mean

High CoV: $\theta > 1$ Low CoV: $\theta < 1$

Food Security Indicators

Balanced Diet

Household Dietary Diversity Score (HDDS)

- The HDDS is a qualitative indicator that is based on a questionnaire inquiring household members regarding food consumption in the previous 15 days to 1 month.
- Therefore, this study incorporates the food items consumed by households categorised into 16 groups to determine HDDS. However, one group (organ meat) data is unavailable in HIES.
- Each food item weighs 1 point with the maximum HDDS = 15. For ease of computation, all food groups are coded 1 to 15.

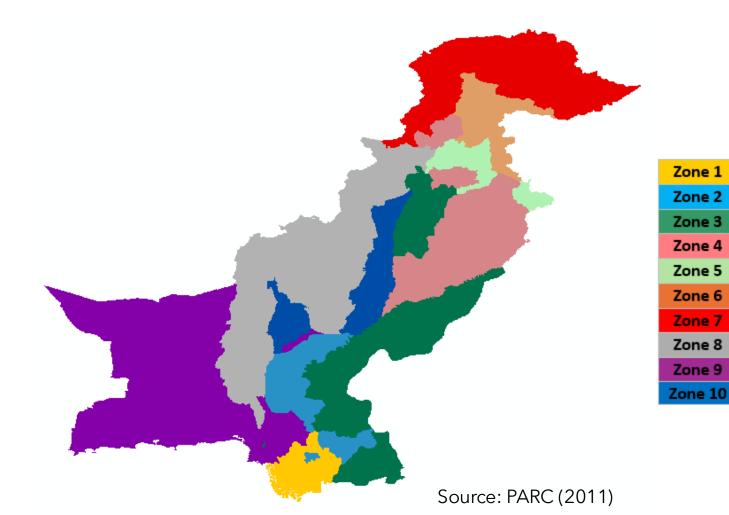
Source: FAO (2011) and Kennedy et al. (2011)

Indus Delta

Southern Irrigated Plain

Sandy Desert Northern Irrigated Plain

Barani (Rainfall) Lands


Wet Mountains

Northern Dry Mountains Western Dry Mountains

Dry Western Plateau

Sulaiman Piedmont

Agro-Ecological Zones of Pakistan

Regression Models

For Rural Households

 $FS_r = \alpha + \beta_1 A_r + \beta_2 MRI_r + \beta_3 H_r + \beta_4 R_r + \beta_5 Y_r + \mu_r$

where, FS_r is a measure of food security (with balanced diet or household dietary diversity score as proxies) in rural household r, A_r is the agricultural household (with non-agricultural household as base), MRI_r is the zonal monsoon rainfall intensity, H_r is a vector of household characteristics (income, dependency ratio, head's education, head's age, and head's gender), R_r is a vector of regional characteristics (zone and district), and Y_r is a vector of time (2013-14, 2015-16, and 2018-19).

For Agricultural Households

 $FS_a = \sigma + \gamma_1 L_a + \gamma_2 MRI_a + \gamma_3 H_a + \gamma_4 R_a + \gamma_5 Y_a + \epsilon_a$

where, FS_a is a measure of food security (with balanced diet or household dietary diversity score as proxies) in agricultural household a, L_a is livelihood source of household, MRI_a is the zonal monsoon rainfall intensity, H_a is a vector of household characteristics (income, dependency ratio, head's education, head's age, and head's gender), R_a is a vector of regional characteristics (zone and district), and Y_a is a vector of time (2013-14, 2015-16, and 2018-19).

CONNECTING THE DOTS ACROSS SYSTEMS

Results & Analysis

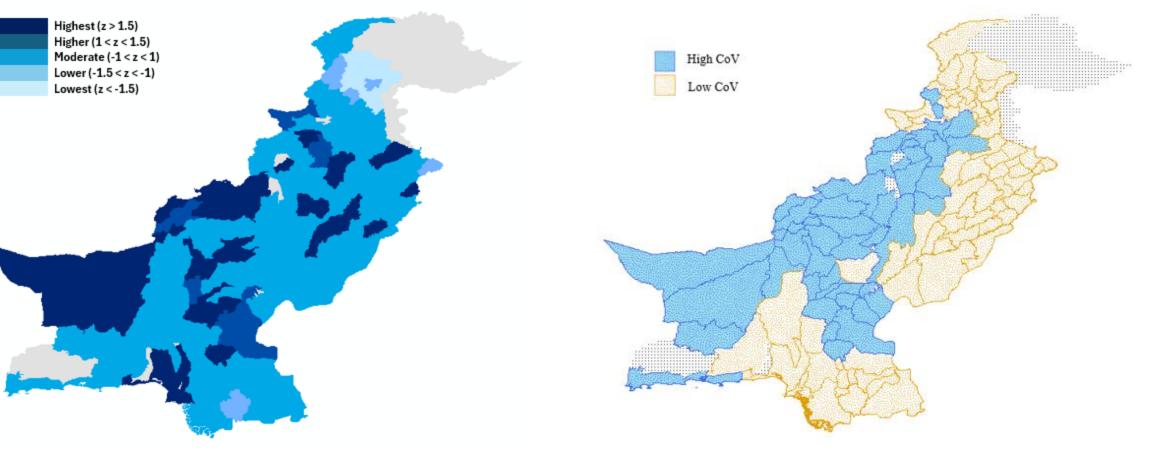
Summary Statistics

Variable	Percent	Variable	Percent
Monsoon Rainfall		Household Asset Index	
Lowest ($z < -1.5$)	3.8	Poorest	26.0
Lower ($-1.5 < z < -1$)	7.8	Poorer	22.2
Moderate ($1 < z < -1$)	61.4	Middle	24.1
Higher (1 < <i>z</i> < 1.5)	6.8	Richer	14.6
Highest ($z > 1.5$)	20.2	Richest	13.1
Agricultural Household		Household Income Index	
Agricultural	35.4	Poorest	22.1
Non-Agricultural	64.6	Poorer	21.7
Household Dietary Diversity Score		Middle	19.5
(HDDS)			
Low	20.0	Richer	18.8
Medium	23.6	Richest	17.9
High	56.4	Household Size	
Balanced Diet		Less than or equal to 5	39.8
Balanced	36.0	Greater than 5	60.2
Unbalanced	64.0		

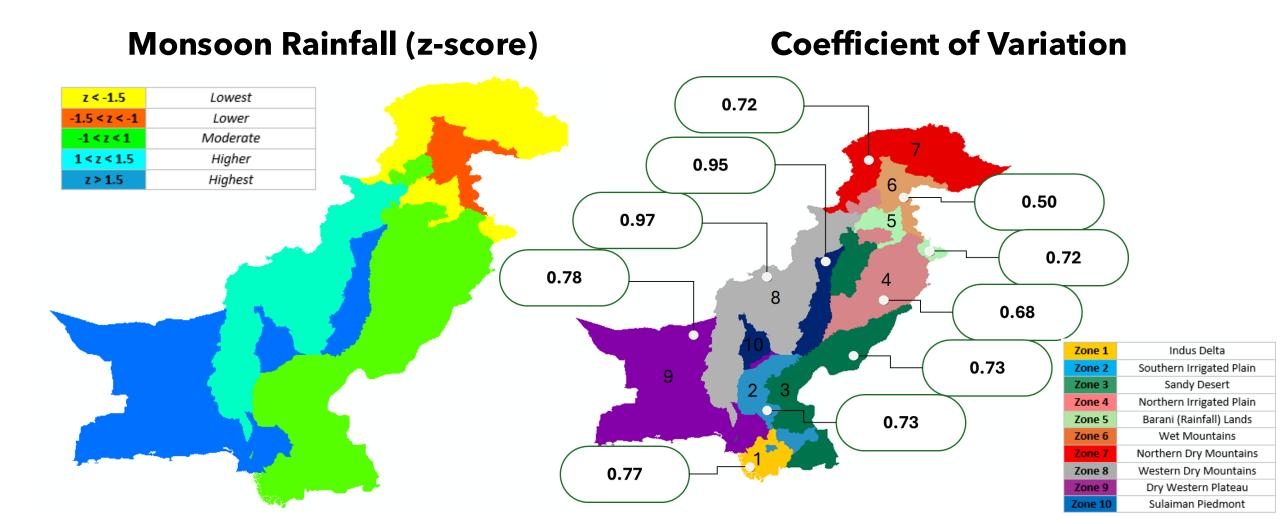
Source: Author's calculation using HIES and NASA Giovanni Earth Data

Monsoon Rainfall Variability

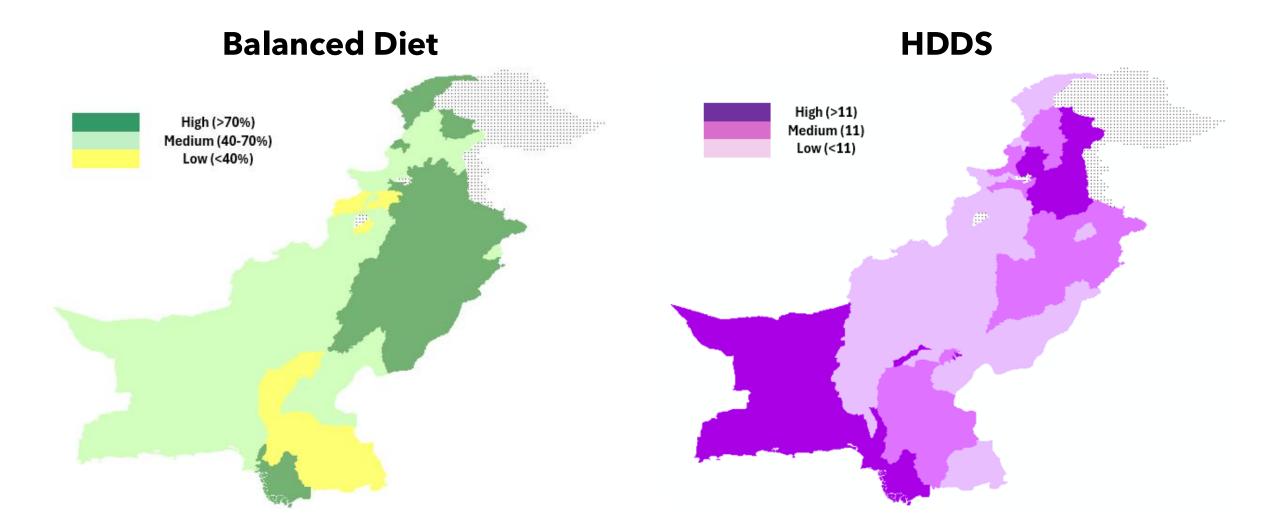
In 2015, the overall monsoon precipitation was 8.7 % higher than the (30-year) historic average.



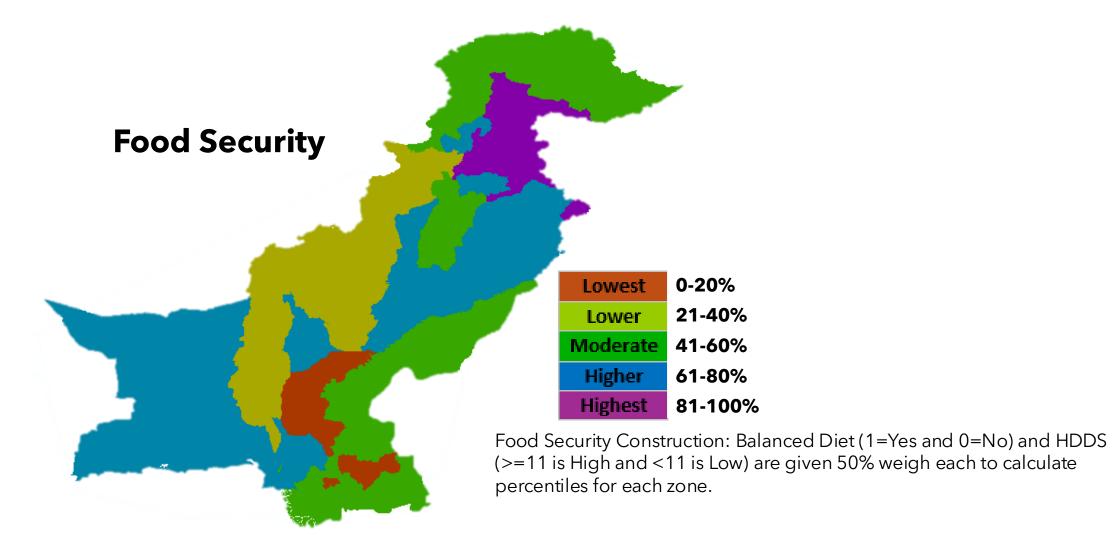
Geospatial Mapping of Climate Variation


Monsoon Rainfall (z-score)

Coefficient of Variation

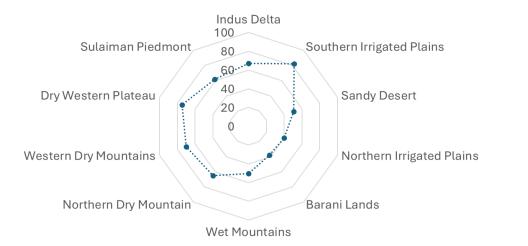


Geospatial Mapping of Climate Variation (Zones)

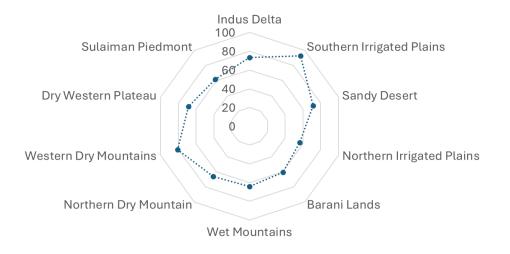


Geospatial Mapping of Food Security

Geospatial Mapping of Food Security (Zones)

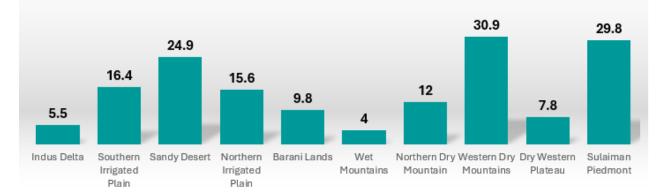


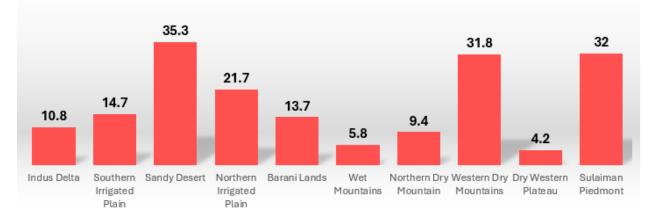
Balanced Diet


Agricultural Households

Non-Agricultural Households

UNBALANCED DIET (%)


UNBALANCED DIET (%)


Household Dietary Diversity Score (HDDS)

Low HDDS (%) Agricultural Households

20 24

Low HDDS (%) Non-Agricultural Households

Association between Agriculture and Food Security

DAN 20 24

	Balanc	ed Diet			HDDS d		_
	No	Yes		Low	Medium	High	-
Land Type			Land Type				
(p = 0.000) chi ² (1) = 23.48			(p = 0.000) chi ² (2) = 94.98				
Barani (Rain-fed)	51.1	48.9	Barani (Rain-fed)	13.2	18.4	68.4	
Irrigated	56.6	43.4	Irrigated	18.7	23.9	57.4	
Land Size ^a			Land Size ^a				
(p = 0.000) chi ² (2) = 20.08			(p = 0.000) chi ² (4) = 31.33				
Small	52.9	47.1	Small	18.3	22.4	59.3	
Medium	47.7	52.3	Medium	16.3	21.2	62.5	
Large	51.9	48.1	Large	13.1	20.0	66.8	
Land Share			Land Share				
$(p = 0.000) chi^2(2) = 492.22$			(p = 0.000) chi ² (4) = 156.16				
No Share	49.7	50.3	No Share	16.2	20.9	62.9	
< 50%	72.0	28.0	< 50%	21.7	27.9	50.4	
> 50%	68.5	31.5	> 50%	20.4	20.4	59.3	
Crop Type ^b			Crop Type ^b				
(p = 0.000) chi ² (1) = 44.61			$(p = 0.398) \operatorname{chi}^2(2) = 1.84$				
Homogenous Crop	57.7	42.3	Homogenous Crop	17.5	22.5	60.0	
Crop Diversification	51.2	48.8	Crop Diversification	16.6	23.1	60.3	
Livelihood Type ^c			Livelihood Type ^c				
(p = 0.000) chi ² (2) = 410.45			(p = 0.000) chi ² (4) = 35.28				
Cropping	71.4	28.6	Cropping	20.7	23.7	55.6	
Diversified Livelihood	50.4	49.6	Diversified Livelihood	16.6	22.4	60.9	
Livestock	74.1	25.9	Livestock	24.1	20.4	55.6	

^a Small < 1 acre, medium > 1 and < 5 acres, and large > 10
acres. ^b Homogenous crop = food crop and crop diversification =
food and cash crop.
^c Diversified livelihood = cropping and livestock both. ^d HDDS categorization, low < 11 i.e., mean HDDS,
medium = 11, and high > 11 .

Regression Results

Logistic Regression: Rural HHs	Balanced Diet (OR)	HDDS (OR)	Log
Zonal Monsoon Rainfall Intensity	,		Zon
(Ref: Moderate)			(Ref:
Lowest	0.51***	1.09	Low
Lower	0.64***	2.51***	Low
Higher	0.69***	0.99	Higł
Highest	1.23**	1.11	High
Rural Households			Live
(Ref: Non-Agri Households)			(Ref
Agricultural Households	1.57***	1.34***	Live
Constant	0.24***	0.53***	Con
Household Controls	Yes	Yes	Hou
Region FE	Yes	Yes	Reg
Time FE	Yes	Yes	Tim

Logistic Regression: Agri HHs	Balanced Diet (OR)	HDDS (OR)
Zonal Monsoon Rainfall Intensit	V	
(Ref: Moderate)	•)	
Lowest	0.33***	1.06
Lower	0.23***	1.49
Higher	0.76	2.90*
Highest	0.89	1.41
Livelihood Source		
(Ref: Cropping only)		
Livestock & Cropping	1.81***	1.21***
Constant	0.08**	1.87**
Household Controls	Yes	Yes
Region FE	Yes	Yes
Time FE	Yes	Yes

(Odds Ratio with 95% Confidence Intervals)

DAN 20 24

CONNECTING THE DOTS ACROSS SYSTEMS

Conclusion

Main Findings

- Climate-induced rainfall variability is prevalent across the agro-ecological zones of Pakistan.
- Within agro-ecological zones, disparity in monsoon rainfall is high -zones with traditionally higher monsoon rainfall experienced reduced rainfall, while barren lands of Balochistan and Sindh witnessed multifold increase in the monsoon rain.
- With monsoon rainfall variability, agricultural households fare better in terms of food security compared to non-agricultural households.
- Agricultural households with diversified livelihood sources are more food secure, relative to ones reliant on cropping only.

Policy Recommendations

- To attain higher food security amid monsoon rainfall variation, agricultural policy should advocate farmers to diversify their livelihood sources use irrigation for their agricultural land instead of relying on rainfall only.
- Small farmers are more vulnerable to food insecurity; therefore, the agricultural policies should be focused on small land holders.
- Relatively food insecure agro-ecological zones are Sandy Desert (Zone 3), Western Dry Mountains (Zone 8), and Sulaiman Piedmont (Zone 10); hence, these climate zones must be focused upon more.

Limitations

- Several items belonging to different food categories are grouped together. (For example, code 11706 includes "tinda, pumpkin, bottle gourd" where pumpkin is "vitamin A rich vegetable" while tinda and bottle gourd are categorized as "other vegetables").
- For readymade food items, only expenditure values are given; caloric and nutritional value of these food items cannot be calculated.
- Balanced diet does not breakdown into under and over consumption.
- No indicator that captures intra-household consumption pattern

CONNECTING THE DOTS ACROSS SYSTEMS

Thank You!