

DELIVERING FOR NUTRITION IN SOUTH ASIA CONNECTING THE DOTS ACROSS SYSTEMS

December 5, 2024 • Colombo, Sri Lanka

Enhancing Nutritional Security Through Agri-Nutri Smart Villages: An Index-Based Approach in Telangana and Uttar Pradesh

Pagadala Sai Priyanka, Krishi Vigyan Kendra, Telangana



#### CONNECTING THE DOTS ACROSS SYSTEMS

Agri-Nutri

(A2N)

Smart

Village

# Rationale

Gaps identified in measurement of the full pathway of change from agricultural inputs and practices to nutrition outcomes. To improve the evidence base, there is a **need to develop indicators of outcomes** that are not being fully measured (Herforth & Ballard, 2016).

 Empirical studies at village level to monitor and evaluate nutrition sensitive farming approaches and nutri-sensitive behavior of individuals were not carried out.

✓ A model A2N smart village is a rural area that uses technology to maximize agricultural productivity, improve nutrition, and promote economic development. It is a model village that has adopted sustainable farming practices and is actively promoting access to healthy foods and nutrition education, use of digital tools to improve agricultural production and access to markets. • Promotion of **biofortified crops nutri-rich varieties**, **traditional** and conservation of traditional crops rich in nutrients

- Fruits and vegetables cultivation
- Fodder crop cultivation

Nutri Farming System

• Food processing/value added products/food fortification

• Training and follow up on preparation of low cost nutritious foods for self and commercial purpose

Community Agri-Nutri Security Centres (CANSCs) Behavioural Change
Interventions

Agri-Nutri videos

 Nutri-quizzes for women, men and children

- · Nutri discussion forums
- · Farmer-scientist interface
- e-agri-nutricentres

**Agri-NutriEducation** 

• Gram Panchayats, Anganwadis, Schools, SHGs, Banks, NGOS, Krishi Vigyan Kendras

> Participatory approach

Source: Sangeetha et al, 2018



# **Research Methodology**



- Mixed method approach to identify the indicators adopting qualitative thematic analysis (6 thematic areas) of literature review (61) and quantitative Q-sorting (42) by experts with mean ≥ median. PCA reduced to 40 indicators under 12 dimensions.
- Indicators were validated in 3 model and 3 non-model villages (purposive) from two agro-climatic regions of Uttar Pradesh (IARI) and Telangana (DDS) on a total sample of 360 farmers (random) using an index developed through Alkire-foster method of counting.



## **Agri-Nutrition Knowledge Level**



|               | (N = 90)           | Mean   | SD   | t value    |
|---------------|--------------------|--------|------|------------|
| Telangana     | Model villages     | 19.656 | 6.76 | 3.77**     |
|               | Non-model villages | 16.089 | 5.88 | (p < 0.01) |
| Uttar Pradesh | Model villages     | 19.72  | 7.31 | 5.14**     |
|               | Non-model villages | 14.26  | 6.92 | (p < 0.01) |

## **Agri-Nutrition Attitude Level**







#### **DELIVERING FOR NUTRITION IN SOUTH ASIA**



#### Tree map of codes

| Market access & informati | Nutrition education    | Panchayat se           | Women's   | Water n | na      | Waste ma   | Und      | ernut      | Renewa | bl    | Nutrit | ion K  |
|---------------------------|------------------------|------------------------|-----------|---------|---------|------------|----------|------------|--------|-------|--------|--------|
|                           |                        |                        |           |         |         |            |          |            |        |       |        |        |
|                           | Livestock              |                        |           |         |         |            |          |            |        |       |        |        |
| nstitutional support      | LIVESLOCK              | Irrigation             | Transport | Stora   | age fa. | Status d   | of So    | oil health | Social | par   | Nutr   | ition  |
|                           |                        |                        |           |         |         |            |          |            |        |       |        |        |
|                           |                        |                        |           |         |         |            |          |            |        |       |        |        |
|                           | BMI                    | ICTs                   | Inclusive | devel   | Exter   | nsi Ele    | ctricity | Cultural   | Cror   | iac   | Cro    | o ma   |
| Crop diversity            |                        |                        |           |         |         |            |          |            |        |       |        |        |
|                           |                        |                        |           |         |         |            |          |            |        |       |        |        |
|                           | Women's access to pr   | Hygiene & sanita.      | Health la | anties  |         |            |          |            |        |       |        |        |
|                           |                        |                        |           |         | Capa    | city buil  | Staple   | Soci       | alsRo  | oads  | Nu     | ıtriti |
| Drinking water            |                        | kitchen garden         | Fodder so | urce    |         |            |          |            |        |       |        |        |
|                           | Production orientation | Ŭ                      |           |         | e-adv   | visory se  | Digita   | marke      |        |       |        | In     |
|                           |                        | Women's input in       | Farm tech | nologi  |         |            |          |            |        |       |        |        |
| Consumption diversity     |                        |                        |           |         | Yout    | h in agric | Cookii   | ng fuel    | Hous   | Co    |        | Agri   |
|                           | Production of nutrient | Production of nutrient |           | pment   |         |            |          |            | 11003  | 0     |        | ды     |
|                           |                        | value addition         |           |         | Veter   | rnary cl   | Agro-l   | piodive    | Digita | . Civ | ic     | Acce   |
|                           |                        |                        |           |         |         |            |          |            |        |       |        |        |

#### CONNECTING THE DOTS ACROSS SYSTEMS

### Thematic Map of Indicators



|     | DELIVERING F                   | OR NUTRI | TION IN SOUT | H ASIA  |
|-----|--------------------------------|----------|--------------|---------|
| SNo | Indicators                     | Mean     | Category     | 0.      |
| 1   | Production of nutrient-rich    | 8.73     | Most         | i       |
|     | food crop varieties            |          | important    |         |
| 2   | Kitchen garden                 | 8.47     |              |         |
| 3   | Agri-Nutrition Knowledge       | 8.07     |              | • 1     |
| 4   | Livestock or milch cattle      | 8.00     | Highly       | S       |
| 5   | Drinking water                 | 7.93     | important    | • т     |
| 6   | Agro-biodiversity conservation | 7.73     |              | i ii    |
| 7   | Agri-Nutrition practices       | 7.73     |              | • N     |
| 8   | Soil health                    | 7.20     | Very         | • 4     |
| 9   | Prevalence of undernutrition   | 7.20     | important    | 4       |
| 10  | Crop diversity                 | 7.20     |              | S. 1    |
| 11  | Farm equipment                 | 7.07     |              | No      |
| 12  | HDDS                           | 7.07     |              | 25      |
| 13  | Fodder source                  | 6.87     |              | 20      |
| 14  | Possession of a smart phone    | 6.87     |              | 28      |
| 15  | Production orientation         | 6.87     | Quite        | 29      |
| 16  | Extension contact              | 6.27     | important    | 30      |
| 17  | Access to health facilities    | 6.20     |              | 31      |
| 18  | Cooking fuel                   | 6.20     |              | 32      |
| 19  | Nutrition education            | 6.13     |              |         |
| 20  | Market access & information    | 6.00     |              | 34 1    |
| 21  | Crop management                | 5.93     |              | 35 \    |
| 22  | Farm technologies              | 5.93     |              |         |
| 23  | Local institutional support    | 5.87     |              | 36 37 9 |
| 24  | e-agro advisory utilization    | 5.80     |              |         |

| Ω-sort distrib<br>indicators ar<br>mean sco                                                                      | ution<br>nd th<br>pres                                                                                                                                                                                                                                                                                                                                                            | n of<br>eir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 15 experts sort<br>Scientists; KVK<br>Total - 9 catego<br>indicators<br>Mean range = 8<br>42 selected wit<br>4.5 | ed -<br>SMS.<br>ories;<br>8.73 -<br>h mea                                                                                                                                                                                                                                                                                                                                         | 61<br>1.93<br>an ≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Indicators                                                                                                       | Mea                                                                                                                                                                                                                                                                                                                                                                               | Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eg                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                 | ory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Women's access                                                                                                   | 5.73                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| BMI                                                                                                              | 5.67                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Transportation                                                                                                   | 5.67                                                                                                                                                                                                                                                                                                                                                                              | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | q                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Toilets                                                                                                          | 5.60                                                                                                                                                                                                                                                                                                                                                                              | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Nutrition safety                                                                                                 | 5.53                                                                                                                                                                                                                                                                                                                                                                              | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r                                                                                                                                                                                                                                                                                                                                                                                                                                | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| nets access                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   | . P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| A2N attitude                                                                                                     | 5.53                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Women's control                                                                                                  | 5.47                                                                                                                                                                                                                                                                                                                                                                              | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | а                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Income                                                                                                           | 5.40                                                                                                                                                                                                                                                                                                                                                                              | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Diversification                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| F-F extension                                                                                                    | 5.33                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| irrigation                                                                                                       | 5.33                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| vvomen s                                                                                                         | 5.27                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                  | E 20                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Storage facilities                                                                                               | 5.20                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Social                                                                                                           | 5.07                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                  | 2-sort distribution<br>indicators are<br>mean score<br>15 experts sort<br>Scientists; KVK<br>Total - 9 catego<br>indicators<br>Mean range = 8<br>42 selected wit<br>4.5 Indicators Women's access BMI Transportation Toilets Nutrition safety nets access A2N attitude Women's control Income Diversification F-F extension Irrigation Women's decision making Storage facilities | A-soort distributionindicators and theindicators and scientists; KVK SMS.Scientists; KVK SMS.Total - 9 categories;indicatorsMean range = 8.73 - 42 selected with meat42 selected with meat42 selected with meat4.5IndicatorsMean range = 8.73 - 42 selected with meat4.5IndicatorsMean range = 8.73 - 42 selected with meat4.5IndicatorsMean range = 8.73 - 42 selected with meat100men's access5.60Nutrition safety5.61Nutrition safety5.63Momen's control5.40Diversification5.41Income5.42Inrigation5.33Women's5.33Women's5.20Social5.071Social5.072 | DescriptionSecond distributionSecond stateIndicators and solve-Scientists; KVKS/S/STotal - 9 cate-Scientists; KVK-Indicators8.73 - 1.93Mean range8.73 - 1.9342 selected with means-42 selected with means-4.5nIndicatorsMeaMeans5.73SBMI5.67Toilets5.60Nutrition safety5.53Nutrition safety5.53Nutrition safety5.40A2N attitude5.53Nomen's control5.40Diversification5.33Income5.33Irrigation5.33Women's5.20Social5.20Social5.20 | D-soort distribution of stateIndicators and solve of scientists; KVK SMS.Total - 9 categories; 61indicatorsMean range = 8.73 - 1.93A2 selected with mean solve of scientists; KVKMean range = 8.73 - 1.93A2 selected with mean solve of scientists; KVKMean range = 8.73 - 1.93A2 selected with mean solve of scientists; KVKMean range = 8.73 - 1.93A2 selected with mean solve of scientists; KVKMean range = 8.73 - 1.93A2 selected with mean solve of scientists; KVKIndicatorsMeaColspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Mean range = 8.73 - 1.93Vomen's accessSocialSocialColspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Mean range = S.73SocialColspan="2">Colspan="2"Mean CategoSocialColspan="2"Mean CategoColspan="2"Mean Catego <td col<="" td=""></td> |  |

DAN 20 24

| S. No | Indicators                 | Mean | Category    |
|-------|----------------------------|------|-------------|
| 38    | Waste management           | 5.00 | Slightly    |
| 39    | Access to credit           | 5.00 | important   |
| 40    | Staple food stocks         | 5.00 |             |
| 41    | Water management           | 4.80 | -           |
| 42    | Type of house              | 4.53 |             |
| 43    | Youth in agriculture       | 4.40 |             |
| 44    | Participation in capacity  | 4.33 |             |
|       | building activities        |      |             |
| 45    | Access to weather forecast | 4.07 | -           |
| 46    | Veterinary facilities      | 4.00 |             |
| 48    | Agri-chemicals usage       | 3.40 | Little      |
| 49    | Renewable energy           | 3.07 | importance  |
| 50    | Cropping intensity         | 3.00 |             |
| 51    | Digital marketing          | 2.93 |             |
| 52    | Status of women            | 2.87 |             |
| 53    | Cultural activities        | 2.67 |             |
| 54    | Roads                      | 2.67 | -           |
| 55    | Digital literacy           | 2.60 | Very little |
| 56    | Community cohesion         | 2.60 | importance  |
| 57    | Nutrition budgeting        | 2.53 |             |
| 58    | Electricity                | 2.47 |             |
| 59    | Inclusive development      | 2.27 | Least       |
| 60    | Panchayat services         | 2.07 | important   |
| 61    | Civic infrastructure       | 1.93 |             |

CONNECTING THE DOTS ACROSS SYSTEMS

|               | DELIVERI                                                                | NG FOR NUTRITION IN SOUTH ASIA $D_{4}$ $N_{24}$ C                                                                   | CONNECTING THE DOTS ACROSS SYSTEMS                 |                    |
|---------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|
| Compon<br>ent | Dimension                                                               | Description                                                                                                         | Indicators                                         | Factor<br>Loadings |
| 5             | Production<br>diversity                                                 | It quantifies the range and types of food produced,<br>emphasizing the availability of diverse sources of nutrition | Production of nutrient rich food crop<br>varieties | .742               |
|               |                                                                         | from both plant and animal origin.                                                                                  | Crop diversity                                     | .703               |
|               |                                                                         |                                                                                                                     | Livestock or milch cattle                          | .693               |
|               |                                                                         |                                                                                                                     | Kitchen garden                                     | .739               |
| 6             | Agri-inputs                                                             | It gauges the effectiveness of resource allocation and                                                              | Production orientation                             | .894               |
|               | management                                                              | practices to enhance agricultural productivity and                                                                  | Farm equipment                                     | .907               |
|               |                                                                         | sustainability.                                                                                                     | Fodder source                                      | .644               |
| 11            | Good farm                                                               | It evaluates the adoption of methods that promote                                                                   | Crop management                                    | .444               |
|               | practices                                                               | sustainable and efficient farming, leading to improved crop                                                         | Soil health                                        | .772               |
|               |                                                                         | yields and soil quality while optimizing water resources.                                                           | Irrigation                                         | .544               |
| 7             | Health and                                                              | It measures the extent to which individuals have access to                                                          | Food access                                        | .761               |
|               | Nutrition                                                               | adequate food, engage in healthy dietary behaviors, and                                                             | Agri-Nutrition practices                           | .733               |
|               | practices                                                               | can obtain essential healthcare services, all contributing to improved health and nutrition outcomes.               | Access to health facilities                        | .761               |
| 1             | Nutrition and                                                           | It measures the capacity of a community to enhance                                                                  | Local institution support                          | .779               |
|               | learning                                                                | nutrition outcomes through a combination of institutional,                                                          | Agri-Nutri Knowledge                               | .814               |
|               |                                                                         | educational, and supportive factors, ultimately promoting                                                           | Agri-Nutrition attitude                            | .832               |
|               |                                                                         | learning and improved nutritional practices                                                                         | Nutrition education                                | .846               |
|               |                                                                         |                                                                                                                     | Access to nutrition safety nets                    | .720               |
| 8             | Financial                                                               | It gauges the community's capacity to secure livelihoods,                                                           | Income diversification                             | .794               |
|               | resilience ensure food security, and manage financial risks in times of |                                                                                                                     | Staple food stocks                                 | .795               |
|               |                                                                         | adversity.                                                                                                          | Access to credit                                   | .777               |

|                | DELIVERIN      | IG FOR NUTRITION IN SOUTH ASIA $D_{4}$ $20$ CC                                                          | ONNECTING THE DOTS ACROSS SYSTE     | MS                 |
|----------------|----------------|---------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|
| Compone<br>net | Dimension      | Description                                                                                             | Indicators                          | Factor<br>Loadings |
| 4              | Basic          | It assesses the adequacy of these infrastructure                                                        | Type of house                       | .856               |
|                | Infrastructure | components, which are essential for ensuring the health,                                                | Access to drinking water            | .608               |
|                |                | safety, and well-being of community members.                                                            | Access to safe cooking              | .758               |
|                |                |                                                                                                         | Access to sanitary facility         | .697               |
| 12             | Smart          | It measures the community's readiness and capacity to                                                   | Possession of smart phone           | .518               |
|                | technologies   | leverage digital tools for enhanced agricultural productivity                                           | Farm technologies                   | .561               |
|                |                | and access to information.                                                                              | E-agro advisory service utilisation | .694               |
| 10             | Market and     | It evaluates the community's ability to efficiently connect                                             | Market access & information         | .649               |
|                | logistics      | agricultural products to markets and manage logistical                                                  | Transportation                      | .758               |
|                |                | aspects of agricultural supply chains, which is essential for<br>economic viability and sustainability. | Storage facilities                  | .771               |
| 2              | Social         | It evaluates how well knowledge and practices are                                                       | Extension contact                   | .926               |
|                | networking     | disseminated and adopted within the community through                                                   | Farmer to farmer extension          | .893               |
|                |                | social interactions and outreach, fostering agricultural development and innovation                     | Social participation                | .926               |
| 3              | Gender         | It measures the extent to which gender equity and                                                       | Women's inputs in decision making   | .895               |
|                | empowerment    | women's empowerment are integrated into the allocation                                                  | Women's access to productive        | 979                |
|                |                | and management of agricultural resources.                                                               | resources                           | .525               |
|                |                |                                                                                                         | Women's control over income         | .916               |
| 9              | Sustainability | It assesses the community's commitment to minimizing                                                    | Waste management                    | .607               |
|                |                | environmental impact and preserving resources for future                                                | Water management                    | .771               |
|                |                | generations.                                                                                            | Agro-biodiversity conservation      | .854               |



CONNECTING THE DOTS ACROSS SYSTEMS



| F         %           Pastapur         13         43.3         0.815         I           Bidakanne         17         56.6         0.773         II           Arjun Nayak Thanda         21         70.0         0.728         IV           Jharsangam         23         76.7         0.687         V           Shamshallapur         23         76.7         0.678         VI           Jamgarbodi Thanda         24         80.0         0.637         X           Lachoda         18         60.0         0.773         II           Bassi         19         63.3         0.742         III           Sunehra         25         83.3         0.642         IX           Kata         23         76.7         0.673         VII           Mawikala         25         83.3         0.642         IX | Village            | Ina | ANSVI | Rank  |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|-------|------|
| Pastapur         13         43.3         0.815         I           Bidakanne         17         56.6         0.773         II           Arjun Nayak Thanda         21         70.0         0.728         IV           Jharsangam         23         76.7         0.687         V           Shamshallapur         23         76.7         0.678         VI           Jamgarbodi Thanda         24         80.0         0.637         X           Lachoda         18         60.0         0.773         II           Bassi         19         63.3         0.742         III           Sunehra         25         83.3         0.642         IX           Kata         23         76.7         0.673         VI           Mawikala         25         83.3         0.642         IX                        |                    | F   | %     |       |      |
| Bidakanne       17       56.6       0.773       II         Arjun Nayak Thanda       21       70.0       0.728       IV         Jharsangam       23       76.7       0.687       V         Shamshallapur       23       76.7       0.678       VI         Jamgarbodi Thanda       24       80.0       0.637       X         Lachoda       18       60.0       0.773       II         Bassi       19       63.3       0.742       III         Sunehra       25       83.3       0.642       IX         Kata       23       76.7       0.673       VI         Sankroth       27       90.0       0.620       XI                                                                                                                                                                                             | Pastapur           | 13  | 43.3  | 0.815 | I    |
| Arjun Nayak Thanda2170.00.728IVJharsangam2376.70.687VShamshallapur2376.70.678VIJamgarbodi Thanda2480.00.637XLachoda1860.00.773IIBassi1963.30.742IIISunehra2583.30.642IXKata2376.70.673VIISankroth2790.00.620XIMawikala2583.30.653VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bidakanne          | 17  | 56.6  | 0.773 | II   |
| Jharsangam         23         76.7         0.687         V           Shamshallapur         23         76.7         0.678         VI           Jamgarbodi Thanda         24         80.0         0.637         X           Lachoda         18         60.0         0.773         II           Bassi         19         63.3         0.742         III           Sunehra         25         83.3         0.642         IX           Kata         23         76.7         0.673         VI           Sankroth         27         90.0         0.620         XI           Mawikala         25         83.3         0.653         VIII                                                                                                                                                                        | Arjun Nayak Thanda | 21  | 70.0  | 0.728 | IV   |
| Shamshallapur       23       76.7       0.678       VI         Jamgarbodi Thanda       24       80.0       0.637       X         Lachoda       18       60.0       0.773       II         Bassi       19       63.3       0.742       III         Sunehra       25       83.3       0.642       IX         Kata       23       76.7       0.673       VII         Sankroth       27       90.0       0.620       XI         Mawikala       25       83.3       0.653       VIII                                                                                                                                                                                                                                                                                                                          | Jharsangam         | 23  | 76.7  | 0.687 | V    |
| Jamgarbodi Thanda2480.00.637XLachoda1860.00.773IIBassi1963.30.742IIISunehra2583.30.642IXKata2376.70.673VIISankroth2790.00.620XIMawikala2583.30.653VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Shamshallapur      | 23  | 76.7  | 0.678 | VI   |
| Lachoda1860.00.773IIBassi1963.30.742IIISunehra2583.30.642IXKata2376.70.673VIISankroth2790.00.620XIMawikala2583.30.653VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jamgarbodi Thanda  | 24  | 80.0  | 0.637 | X    |
| Bassi1963.30.742IIISunehra2583.30.642IXKata2376.70.673VIISankroth2790.00.620XIMawikala2583.30.653VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lachoda            | 18  | 60.0  | 0.773 | 11   |
| Sunehra2583.30.642IXKata2376.70.673VIISankroth2790.00.620XIMawikala2583.30.653VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bassi              | 19  | 63.3  | 0.742 | III  |
| Kata2376.70.673VIISankroth2790.00.620XIMawikala2583.30.653VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sunehra            | 25  | 83.3  | 0.642 | IX   |
| Sankroth2790.00.620XIMawikala2583.30.653VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kata               | 23  | 76.7  | 0.673 | VII  |
| Mawikala 25 83.3 0.653 <b>VIII</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sankroth           | 27  | 90.0  | 0.620 | XI   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mawikala           | 25  | 83.3  | 0.653 | VIII |

DELIVERING FOR NUTRITION IN SOUTH ASIA

CONNECTING THE DOTS ACROSS SYSTEMS

| SI.<br>No | Indicators<br>(TELANGANA)      | Uncen<br>headco<br>ratio (° | sored<br>ount<br>%) | Cens<br>head<br>ratio | ored<br>count<br>(%) | Propor<br>contrik<br>to Non<br>A2NS | rtional<br>oution | SI.<br>No | Indicators<br>(UTTAR PRADESH)    | Unce<br>head<br>ratio | nsored<br>count | Cens<br>head<br>ratio | ored<br>count | Propo<br>contril<br>to Nor<br>A2NS | rtional<br>bution<br>n |
|-----------|--------------------------------|-----------------------------|---------------------|-----------------------|----------------------|-------------------------------------|-------------------|-----------|----------------------------------|-----------------------|-----------------|-----------------------|---------------|------------------------------------|------------------------|
|           |                                | MV                          | NMV                 | MV                    | NMV                  | MV                                  | NMV               |           |                                  | MV                    | NMV             | MV                    | NMV           | MV                                 | NMV                    |
| 1         | Production diversity           | 08.9                        | 11.1                | 06.7                  | 11.1                 | 0.95                                | 1.38              | 1         | Production diversity             | 13.3                  | 10.0            | 11.1                  | 08.8          | 1.53                               | 1.27                   |
| 2         | Agri inputs<br>management      | 15.6                        | 50.0                | 14.4                  | 45.6                 | 1.67                                | 6.21              | 2         | Agri inputs<br>management        | 33.3                  | 42.2            | 17.8                  | 36.7          | 3.82                               | 5.36                   |
| 3         | Good farm practices            | 48.9                        | 36.7                | 18.9                  | 31.1                 | 5.25                                | 4.55              | 3         | Good farm<br>practices           | 45.6                  | 42.2            | 36.7                  | 35.6          | 5.23                               | 5.36                   |
| 4         | Health and nutrition practices | 11.1                        | 16.7                | 10.0                  | 15.6                 | 1.19                                | 2.07              | 4         | Health and nutrition practices   | 12.2                  | 13.3            | 12.2                  | 13.3          | 1.40                               | 1.69                   |
| 5         | Nutrition and learning         | 83.3                        | 81.1                | 54.4                  | 68.9                 | 8.95                                | 10.1              | 5         | Nutrition and                    | 81.1                  | 82.2            | 58.9                  | 74.4          | 9.31                               | 10.4                   |
| 6         | Financial resilience           | 08.9                        | 10.0                | 07.8                  | 10.0                 | 0.95                                | 1.24              | 6         | learning<br>Financial resilience | 10.0                  | 10.0            | 08.9                  | 10.0          | 1.14                               | 1.27                   |
| 7         | Basic infrastructure           | 25.6                        | 28.9                | 18.9                  | 26.7                 | 2.74                                | 3.59              | 7         | Basic infrastructure             | 27.8                  | 35.6            | 26.7                  | 34.4          | 3.19                               | 4.52                   |
| 8         | Smart technologies             | 81.1                        | 78.9                | 51.1                  | 65.6                 | 8.71                                | 9.80              | 8         | Smart technologies               | 74.4                  | 73.3            | 57.8                  | 66.7          | 8.54                               | 9.32                   |
| 9         | Market and logistics           | 28.9                        | 21.1                | 22.2                  | 18.9                 | 3.10                                | 2.62              | 9         | Market and logistics             | 26.7                  | 21.1            | 22.2                  | 21.1          | 3.06                               | 2.68                   |
| 10        | Social networking              | 08.9                        | 21.1                | 08.9                  | 21.1                 | 0.95                                | 2.62              | 10        | Social networking                | 11.1                  | 20.0            | 10.0                  | 18.9          | 1.27                               | 2.54                   |
| 11        | Gender<br>empowerment          | 53.3                        | 84.4                | 40.0                  | 64.4                 | 5.73                                | 10.4<br>9         | 11        | Gender<br>empowerment            | 45.6                  | 82.2            | 35.6                  | 68.9          | 7.23                               | 10.4                   |
| 12        | Sustainability                 | 04.4                        | 15.6                | 04.4                  | 15.6                 | 0.47                                | 1.93              | 12        | Sustainability                   | 30.0                  | 31.1            | 22.2                  | 27.8          | 3.44                               | 3.95                   |

DAN 20 24 DAN 20 24





### Distribution of respondents based on their ANSVI levels

| St               | udy area                     | High          | Medium    | Low      |
|------------------|------------------------------|---------------|-----------|----------|
| Telangana        | Model villages $(n-90)$      | 25 (27.8)     | 54(60)    | 11(12.2) |
|                  | Non-model<br>villages (n=90) | 6 (06.7)      | 60(66.6)  | 24(26.6) |
|                  | Total (n=180)                | 31 (17.2)     | 114(63.3) | 35(19.4) |
| Uttar<br>Pradesh | Model villages (n=90)        | 23 (25.6)     | 56(62.2)  | 11(12.2) |
|                  | Non-model<br>villages (n=90) | 7 (07.8)      | 62(68.8)  | 21(23.3) |
|                  | Total (n=180)                | 30 (16.7)     | 118(65.5) | 32(17.7) |
|                  | Overall (n= 360)             | 61<br>(16.94) | 232(64.4) | 67(18.6) |
|                  |                              |               |           |          |

|           | ANOVA          | Sum of<br>Squares | df  | Mean<br>Square | F     | Sig. |
|-----------|----------------|-------------------|-----|----------------|-------|------|
| Telangana | Between Groups | .182              | 1   | .182           | 13.79 | .000 |
| Villages  | Within Groups  | 2.351             | 178 | .013           | 8     |      |
|           | Total          | 2.533             | 179 |                |       |      |
| Uttar     | Between Groups | .085              | 1   | .085           | 7.097 | .008 |
| Pradesh   | Within Groups  | 2.120             | 178 | .012           |       |      |
| Villages  | Total          | 2.205             | 179 |                |       |      |
| Model     | Between Groups | .032              | 1   | .032           | 2.433 | .121 |
| Villages  | Within Groups  | 2.355             | 178 | .013           |       |      |
|           | Total          | 2.387             | 179 |                |       |      |
| Non-      | Between Groups | .002              | 1   | .002           | .158  | .692 |
| Model     | Within Groups  | 2.116             | 178 | .012           |       |      |
| Villages  | Total          | 2.118             | 179 |                |       |      |

### **Sensitivity Analysis of Indicators**

|     |                     | A-F   | PCA   |                       |
|-----|---------------------|-------|-------|-----------------------|
|     | Pearson Correlation | 1     | .103* | Correlation signifies |
| ∖-F | Sig. (2-tailed)     |       | .050  | that indictors do     |
|     | N                   | 360   | 360   | not effect much to    |
|     | Pearson Correlation | .103* | 1     | different weightage   |
| PCA | Sig. (2-tailed)     | .050  |       | procedures.           |
|     | Ν                   | 360   | 360   |                       |

\*. Correlation is significant at the 0.05 level (2-tailed)

**DELIVERING FOR NUTRITION IN SOUTH ASIA** 

# D4N 20 24

#### CONNECTING THE DOTS ACROSS SYSTEMS

## Implications of study

Need for tailored training programs and knowledge transfer from model villages to non-model villages.

The study identifies various indicators of model Agri-Nutri Smart Villages. These indicators can serve as benchmarks for evaluating and ranking villages in terms of their development in nutrition through agriculture. This is important for tracking progress and targeting interventions where they are needed the most.

The study highlights the importance of providing resources and incentives for adopting nutri farming practices.









